ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the metal-insulator transition in epitaxial SrVO3 films by uniaxial strain

87   0   0.0 ( 0 )
 نشر من قبل Shengqiang Zhou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding of the metal-insulator transition (MIT) in correlated transition-metal oxides is a fascinating topic in condensed matter physics and a precise control of such transitions plays a key role in developing novel electronic devices. Here we report an effective tuning of the MIT in epitaxial SrVO3 (SVO) films by expanding the out-of-plane lattice constant without changing in-plane lattice parameters, through helium ion irradiation. Upon increase of the ion fluence, we observe a MIT with a crossover from metallic to insulating state in SVO films. A combination of transport and magnetoresistance measurements in SVO at low temperatures reveals that the observed MIT is mainly ascribed to electron-electron interactions rather than disorder-induced localization. Moreover, these results are well supported by the combination of density functional theory and dynamical mean field theory (DFT+DMFT) calculations, further confirming the decrease of the bandwidth and the enhanced electron-electron interactions resulting from the expansion of out-of-plane lattice constant. These findings provide new insights into the understanding of MIT in correlated oxides and perspectives for the design of unexpected functional devices based on strongly correlated electrons.



قيم البحث

اقرأ أيضاً

In the perovskite oxide SrCrO$_{3}$ the interplay between crystal structure, strain and orbital ordering enables a transition from a metallic to an insulating electronic structure under certain conditions. We identified a narrow window of oxygen part ial pressure in which highly strained SrCrO$_{3}$ thin films can be grown using radio-frequency (RF) off-axis magnetron sputtering on three different substrates, (LaAlO$_{3}$)$_{0.3}$-(Sr$_{2}$TaAlO$_{6}$)$_{0.7}$ (LSAT), SrTiO$_{3}$ (STO) and DyScO$_{3}$ (DSO). X-ray diffraction and atomic force microscopy confirmed the quality of the films and a metal-insulator transition driven by the substrate induced strain was demonstrated.
180 - Jian Liu , M. Kareev , B. Gray 2010
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistiv ity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO$_{3}$, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.
The capability to control the type and amount of charge carriers in a material and, in the extreme case, the transition from metal to insulator is one of the key challenges of modern electronics. By employing angle resolved photoemission spectroscopy (ARPES) we find that a reversible metal to insulator transition and a fine tuning of the charge carriers from electrons to holes can be achieved in epitaxial bilayer and single layer graphene by molecular doping. The effects of electron screening and disorder are also discussed. These results demonstrate that epitaxial graphene is suitable for electronics applications, as well as provide new opportunities for studying the hole doping regime of the Dirac cone in graphene.
We investigated the crystal and electronic structures of ferroelectric Bi4Ti3O12 (BiT) single crystalline thin films site-specifically substituted with LaCoO3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO3 and SrTiO3 substrat es to vary the degree of strain. With increasing the LCO substitution, we observed a systematic increase in the c-axis lattice constant of the Aurivillius phase related with the modification of pseudo-orthorhombic unit cells. These compositional and structural changes resulted in a systematic decrease in the band gap, i.e., the optical transition energy between the oxygen 2p and transition metal 3d states, based on a spectroscopic ellipsometry study. In particular, the Co 3d state seems to largely overlap with the Ti t2g state, decreasing the band gap. Interestingly, the applied tensile strain facilitates the band gap narrowing, demonstrating that epitaxial strain is a useful tool to tune the electronic structure of ferroelectric transition metal oxides.
A current challenge in the field of magnetoelectric multiferroics is to identify systems that allow a controlled tuning of states displaying distinct magnetoelectric responses. Here we show that the multiferroic ground state of the archetypal multife rroic TbMnO3 is dramatically modified by epitaxial strain. Neutron diffraction reveals that in highly strained films the magnetic order changes from the bulk-like incommensurate bc-cycloidal structure to commensurate magnetic order. Concomitant with the modification of the magnetic ground state, optical second-harmonic generation (SHG) and electric measurements show an enormous increase of the ferroelectric polarization, and a change in its direction from along the c- to the a-axis. Our results suggest that the drastic change of multiferroic properties results from a switch of the spin-current magnetoelectric coupling in bulk TbMnO3 to symmetric magnetostriction in epitaxially-strained TbMnO3. These findings experimentally demonstrate that epitaxial strain can be used to control single-phase spin-driven multiferroic states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا