ﻻ يوجد ملخص باللغة العربية
Optical gratings are a key component in many spectroscopy, communications, and imaging systems. While initially static elements, advances in optical materials have enabled dynamically tunable gratings to be designed. One common tuning strategy is relying on mechanical deformation of the grating pitch to modify the diffraction pattern. To date, most mechanically adaptive optical gratings consist of a hybrid system where rigid moieties are patterned on an elastomeric substrate. In the present work, we demonstrate an all-polymer tunable grating that is fabricated using replica molding from the poly(acrylic acid) (PAA)/polyethylene oxide (PEO) polymer stereocomplex. PAA/PEO pristine films exhibit excellent optical transmittance at or above 80% from 500 nm to 1400 nm and stretchability over 800% strain. The experimental studies on the changes of diffraction mode distances with respect to the applied strains agree well with the finite-difference time-domain (FDTD) theoretical modeling.
We experimentally characterize the positions of the diffraction maxima of a phase grating on a screen, for laser light at oblique incidence (so-called off-plane diffraction or conical diffraction). We discuss the general case of off-plane diffraction
This work presents a theoretical investigation of an active diffraction grating of the Parity-Time (PT) symmetric architecture. The analytical study of the free-space mode propagation in the grating structure indicates the unique bifurcation property
We introduce a grating assisted tunneling scheme for tunable synthetic magnetic fields in photonic lattices, which can be implemented at optical frequencies in optically induced one- and two-dimensional dielectric photonic lattices. We demonstrate a
We show that, a metasurface composed of subwavelength metallic slit array embedded in an asymmetric environment can exhibit either extraordinary optical transmission (EOT) or extraordinary optical diffraction (EOD). By employing an analytical model e
We report on the observation of emerging beam resonances, well known as Rayleigh-Wood anomalies and threshold resonances in photon and electron diffraction, respectively, in an atom-optical diffraction experiment. Diffraction of He atom beams reflect