ﻻ يوجد ملخص باللغة العربية
We show that, a metasurface composed of subwavelength metallic slit array embedded in an asymmetric environment can exhibit either extraordinary optical transmission (EOT) or extraordinary optical diffraction (EOD). By employing an analytical model expansion method and the diffraction order chart in k-vector space, we found that the resonance decaying pathway of the local slit cavity mode can be tuned to either 0th or -1st diffraction order by changing the parallel wavevector, which gives rise to enhanced 0th transmission (EOT) of the structure for small incident angles, and enhanced -1st diffraction (EOD) for large incident angles. Based on this appealing feature, a multifunctional metasurface that can switch its functionality between transmission filter, mirror and off-axis lens is demonstrated. Our findings provide a convenient way to construct multifunctional integrated optical devices on a single planar device.
In this paper, we employ an antireflective coating which comprises of inverted pi shaped metallic grooves to manipulate the behaviour of a TM-polarized plane wave transmitted through a periodic nanoslit array. At normal incidence, such scheme can not
We present a fully three-dimensional theoretical study of the extraordinary transmission of light through subwavelength hole arrays in optically thick metal films. Good agreement is obtained with experimental data. An analytical minimal model is also
In this paper, we will propose that magnetic-resonance nanostructures in a metal surface could be used to realize extraordinary optical transmission (EOT). Toward this goal, we designed and fabricated a one dimensional diatomic chain of slit-hole res
We investigated the radiation pattern of an optical rod antenna and found that it had many features compared with its conventional radio-wave equivalents. After defining a parameter {Lambda} = {lambda}eff /{lambda}, which was the ratio of the effecti
We demonstrate the coherent transduction of quantum noise reduction, or squeezed light, by Ag localized surface plasmons (LSPs). Squeezed light, generated through four-wave-mixing in Rb vapor, is coupled to a Ag nanohole array designed to exhibit LSP