ﻻ يوجد ملخص باللغة العربية
This work presents a theoretical investigation of an active diffraction grating of the Parity-Time (PT) symmetric architecture. The analytical study of the free-space mode propagation in the grating structure indicates the unique bifurcation property due to the PT-symmetry modulation. It is shown that both the gain/loss contrast and the lattice constant parameters are critical factors to modulate the photonic system in between the PT-symmetry to the symmetry-broken phases. Furthermore, numerical simulations via the Rigorous Coupled-Wave Analysis (RCWA) method discover the existence of a unique Spectral Singularity (SS) phenomenon in this PT grating structure which is corresponding to a non-trivial single-mode and near-zero bandwidth photonic resonant emission. Also, the guiding procedure for fulfilling SS modes is found to be related to the unique formation of the scattering matrix applied in the PT-symmetric diffraction gratings. This theoretical work takes a fresh look into the active PT-symmetric diffraction gratings focusing on the discovery of new free-space emission modes rather than the commonly studied unidirectional properties, which could contribute to the development of novel low-threshold and super-coherent laser devices.
Passive parity-time-symmetric medium provides a feasible scheme to investigate non-Hermitian systems experimentally. Here, we design a passive PT-symmetric acoustic grating with a period equal to exact PT-symmetric medium. This treatment enhances the
Non-Hermitian Hamiltonians play an important role in many branches of physics, from quantum mechanics to acoustics. In particular, the realization of PT, and more recently -- anti-PT symmetries in optical systems has proved to be of great value from
We experimentally characterize the positions of the diffraction maxima of a phase grating on a screen, for laser light at oblique incidence (so-called off-plane diffraction or conical diffraction). We discuss the general case of off-plane diffraction
The nonlinear dynamics of a balanced parity-time symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain-thus
The recently-developed notion of parity-time (PT) symmetry in optical systems with a controlled gain-loss interplay has spawned an intriguing way of achieving optical behaviors that are presently unattainable with standard arrangements. In most exper