ﻻ يوجد ملخص باللغة العربية
Measuring the photoionization time delay between electrons from different orbitals is one of the most important accomplishments of attosecond science. These measurements are typically done using attosecond pulses to photoionize a target inside a photoelectron spectrometer. In such experiments, the measured delay corresponds to the superposition of all possible paths to ionization and can include multiple sources of delay. These effects can be difficult to deconvolve. Here, we exploit the collision physics nature of recollision and show that, by perturbing recollision dynamics, photorecombination time delays due to electron dynamics and structure can be measured entirely optically and without obfuscation from molecular structure and propagation effects. While we concentrate on photorecombination delays in argon around the Cooper minimum our approach is general. Therefore, our work holds the potential to fundamentally change how attosecond measurement is performed and paves the way for the entirely optical measurement of ultrafast electron dynamics and photorecombination delays due to electronic structure, multielectron interaction, and strong-field driven dynamics in complex molecular systems and correlated solid-state systems.
This tutorial presents an introduction to the interaction of light and matter on the attosecond timescale. Our aim is to detail the theoretical description of ultra-short time-delays, and to relate these to the phase of extreme ultraviolet (XUV) ligh
We apply a fundamental definition of time delay, as the difference between the time a particle spends within a finite region of a potential and the time a free particle spends in the same region, to determine results for photoionization of an electro
We study the behavior of the Eisenbud-Wigner collisional time delay around Feshbach resonances in cold and ultracold atomic and molecular collisions. We carry out coupled-channels scattering calculations on ultracold Rb and Cs collisions. In the low-
We apply a recently proposed theoretical concept and numerical approach to obtain time delays in extreme ultraviolet (XUV) photoionization of an electron in a short- or long-range potential. The results of our numerical simulations on a space-time gr
We report measured rate coefficients for electron-ion recombination for Si10+ forming Si9+ and for Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-io