ﻻ يوجد ملخص باللغة العربية
We study the behavior of the Eisenbud-Wigner collisional time delay around Feshbach resonances in cold and ultracold atomic and molecular collisions. We carry out coupled-channels scattering calculations on ultracold Rb and Cs collisions. In the low-energy limit, the time delay is proportional to the scattering length, so exhibits a pole as a function of applied field. At high energy, it exhibits a Lorentzian peak as a function of either energy or field. For narrow resonances, the crossover between these two regimes occurs at an energy proportional to the square of the resonance strength parameter $s_textrm{res}$. For wider resonances, the behavior is more complicated and we present an analysis in terms of multichannel quantum defect theory.
We report on deviations beyond the Born-Oppenheimer approximation in the potassium inter-atomic potentials. Identifying three up-to-now unknown $d$-wave Feshbach resonances, we significantly improve the understanding of the $^{39}$K inter-atomic pote
We show that quantum interference-based coherent control is a highly efficient tool for tuning ultracold molecular collision dynamics, and is free from the limitations of commonly used methods that rely on external electromagnetic fields. By varying
We consider losses in collisions of ultracold molecules described by a simple statistical short-range model that explicitly accounts for the limited lifetime of classically chaotic collision complexes. This confirms that thermally sampling many isola
We report measurements of energy-dependent attosecond photoionization delays between the two outer-most valence shells of N$_2$O and H$_2$O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosec
Chemical reactions can be surprisingly efficient at ultracold temperatures ( < 1mK) due to the wave nature of atoms and molecules. The study of reactions in the ultracold regime is a new research frontier enabled by cooling and trapping techniques de