ﻻ يوجد ملخص باللغة العربية
We use the physics-informed neural network to solve a variety of femtosecond optical soliton solutions of the high order nonlinear Schrodinger equation, including one-soliton solution, two-soliton solution, rogue wave solution, W-soliton solution and M-soliton solution. The prediction error for one-soliton, W-soliton and M-soliton is smaller. As the prediction distance increases, the prediction error will gradually increase. The unknown physical parameters of the high order nonlinear Schrodinger equation are studied by using rogue wave solutions as data sets. The neural network is optimized from three aspects including the number of layers of the neural network, the number of neurons, and the sampling points. Compared with previous research, our error is greatly reduced. This is not a replacement for the traditional numerical method, but hopefully to open up new ideas.
A modified physics-informed neural network is used to predict the dynamics of optical pulses including one-soliton, two-soliton, and rogue wave based on the coupled nonlinear Schrodinger equation in birefringent fibers. At the same time, the elastic
We propose effective scheme of deep learning method for high-order nonlinear soliton equation and compare the activation function for high-order soliton equation. The neural network approximates the solution of the equation under the conditions of di
We study the properties of a soliton crystal, an bound state of several optical pulses that propagate with a fixed temporal separation through the optical fibres of the proposed approach for generation of optical frequency combs (OFC) for astronomica
The generation of high-intensity optical fields from harmonic-wave photons, interacting via a cross-phase modulation with dark solitons both propagating in a Kerr nonlinear medium, is examined. The focus is on a pump consisting of time-entangled dark
Thermal field soliton self-organization arising due to absorption of background atoms vibrations is observed in numerical experiment in nonlinear chain with Lennard-Jones potential at high temperature. At some stage intensive space-localized waves ar