ﻻ يوجد ملخص باللغة العربية
We study the properties of a soliton crystal, an bound state of several optical pulses that propagate with a fixed temporal separation through the optical fibres of the proposed approach for generation of optical frequency combs (OFC) for astronomical spectrograph calibration. This approach - also being suitable for subpicosecond pulse generation for other applications - consists of a conventional single-mode fibre and a suitably pumped Erbium-doped fibre. Two continuous-wave lasers are used as light source. The soliton crystal arises out of the initial deeply modulated laser field at low input powers; for higher input powers, it dissolves into free solitons. We study the soliton crystal build-up in the first fibre stage with respect to different fibre parameters (group-velocity dispersion, nonlinearity, and optical losses) and to the light source characteristics (laser frequency separation and intensity difference). We show that the soliton crystal can be described by two quantities, its fundamental frequency and the laser power-threshold at which the crystal dissolves into free solitons. The soliton crystal exhibits features of a linear and nonlinear optical pattern at the same time and is insensitive to the initial laser power fluctuations. We perform our studies using the numerical technique called Soliton Radiation Beat Analysis.
Optical frequency combs (OFCs), consisting of a set of phase locked equally spaced laser frequency lines, have enabled a great leap in precision spectroscopy and metrology since seminal works of Hansch et al. . Nowadays, OFCs are cornerstones of a we
We present a novel compact dual-comb source based on a monolithic optical crystalline MgF$_2$ multi-resonator stack. The coherent soliton combs generated in two microresonators of the stack with the repetition rate of 12.1 GHz and difference of 1.62
We present a stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs in whispering gallery mode resonators pumped in the anomalous dispersion regime. This article is the second part of a research work whose first part was dev
We raise a detuning-dependent loss mechanism to describe the soliton formation dynamics when the lumped filtering operation is manipulated in anomalous group velocity dispersion regime, using stability analysis of generalized Lugiato-Lefever equation.
There are several mechanisms by which the frequency spectrum of a laser broadens when it propagates at near-relativistic-intensity in tenuous plasma. Focusing on one dimensional effects, we identify two strong optical nonlinearities, namely, four-wav