ﻻ يوجد ملخص باللغة العربية
We discuss bosonic models with a moat spectrum, where in momentum space the minimum of the dispersion relation is on a sphere of nonzero radius. For spinless bosons with $O(N)$ symmetry, we emphasize the essential difference between $N=2$ and $N > 2$. When $N=2$, there are two phase transitions: at zero temperature, a transition to a state with Bose condensation, and at nonzero temperature, a transition to a spatially inhomogeneous state. When $N > 2$, previous analysis suggests that a mass gap is generated dynamically at any temperature. In condensed matter, a moat spectrum is important for spin-orbit-coupled bosons. For cold nuclear or quarkyonic matter, we suggest that the transport properties, such as neutrino emission, are dominated by the phonons related to a moat spectrum; also, that at least in the quarkyonic phase the nucleons may be a non-Fermi liquid.
Building on earlier work in the high energy and condensed matter communities, we present a web of dualities in $2+1$ dimensions that generalize the known particle/vortex duality. Some of the dualities relate theories of fermions to theories of bosons
The IR dynamics of effective holographic theories capturing the interplay between charge density and the leading relevant scalar operator at strong coupling are analyzed. Such theories are parameterized by two real exponents $(gamma,delta)$ that cont
We present here a theory of fractional electro-magnetism which is capable of describing phenomenon as disparate as the non-locality of the Pippard kernel in superconductivity and anomalous dimensions for conserved currents in holographic dilatonic mo
Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here Ill supply some broad, unifying context, both conceptual and historical, for the abundance of res
We derive the free energy for fermions and bosons from fragmentation data. Inspired by the symmetry and pairing energy of the Weizsacker mass formula we obtain the free energy of fermions (nucleons) and bosons (alphas and deuterons) using Landaus fre