ﻻ يوجد ملخص باللغة العربية
Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here Ill supply some broad, unifying context, both conceptual and historical, for the abundance of results reported at the Nobel Symposium on New Forms of Matter, Topological Insulators and Superconductors. Since they distill some most basic ideas in their simplest forms, these concluding remarks might also serve, for non-specialists, as an introduction.
Skyrmions were originally introduced in Particle Physics as a possible mechanism to explain the stability of particles. Lately the concept has been applied in Condensed Matter Physics to describe the newly discovered topologically protected magnetic
In this paper we study research trends in condensed matter physics. Trends are analyzed by means of the the number of publications in the different sub-fields as function of the years. We found that many research topics have a similar behavior with a
Circuit QED techniques have been instrumental to manipulate and probe with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices where the supe
We investigate the electromagnetic response of a relativistic Fermi gas at finite temperatures. Our theoretical results are first-order in the fine-structure constant. The electromagnetic permittivity and permeability are introduced via general const
The spin-3/2 elementary particle, known as Rarita-Schwinger (RS) fermion, is described by a vector-spinor field {psi}_{{mu}{alpha}}, whose number of components is larger than its independent degrees of freedom (DOF). Thus the RS equations contain non