ﻻ يوجد ملخص باللغة العربية
Building on earlier work in the high energy and condensed matter communities, we present a web of dualities in $2+1$ dimensions that generalize the known particle/vortex duality. Some of the dualities relate theories of fermions to theories of bosons. Others relate different theories of fermions. For example, the long distance behavior of the $2+1$-dimensional analog of QED with a single Dirac fermion (a theory known as $U(1)_{1/2}$) is identified with the $O(2)$ Wilson-Fisher fixed point. The gauged version of that fixed point with a Chern-Simons coupling at level one is identified as a free Dirac fermion. The latter theory also has a dual version as a fermion interacting with some gauge fields. Assuming some of these dualities, other dualities can be derived. Our analysis resolves a number of confusing issues in the literature including how time reversal is realized in these theories. It also has many applications in condensed matter physics like the theory of topological insulators (and their gapped boundary states) and the problem of electrons in the lowest Landau level at half filling. (Our techniques also clarify some points in the fractional Hall effect and its description using flux attachment.) In addition to presenting several consistency checks, we also present plausible (but not rigorous) derivations of the dualities and relate them to $3+1$-dimensional $S$-duality.
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative fe
We consider Quantum Electrodynamics with an even number $N_f$ of bosonic or fermionic flavors, allowing for interactions respecting at least $U(N_f/2)^2$ global symmetry. Both in the bosonic and in the fermionic case, we find four interacting fixed p
In the last few years it was realized that every fermionic theory in 1+1 dimensions is a generalized Jordan-Wigner transform of a bosonic theory with a non-anomalous $mathbb{Z}_2$ symmetry. In this note we determine how the boundary states are mapped
We discuss bosonic models with a moat spectrum, where in momentum space the minimum of the dispersion relation is on a sphere of nonzero radius. For spinless bosons with $O(N)$ symmetry, we emphasize the essential difference between $N=2$ and $N > 2$
A famous example of gauge/gravity duality is the result that the entropy density of strongly coupled ${cal N}=4$ SYM in four dimensions for large N is exactly 3/4 of the Stefan-Boltzmann limit. In this work, I revisit the massless O(N) model in 2+1 d