ﻻ يوجد ملخص باللغة العربية
Generative modeling of set-structured data, such as point clouds, requires reasoning over local and global structures at various scales. However, adopting multi-scale frameworks for ordinary sequential data to a set-structured data is nontrivial as it should be invariant to the permutation of its elements. In this paper, we propose SetVAE, a hierarchical variational autoencoder for sets. Motivated by recent progress in set encoding, we build SetVAE upon attentive modules that first partition the set and project the partition back to the original cardinality. Exploiting this module, our hierarchical VAE learns latent variables at multiple scales, capturing coarse-to-fine dependency of the set elements while achieving permutation invariance. We evaluate our model on point cloud generation task and achieve competitive performance to the prior arts with substantially smaller model capacity. We qualitatively demonstrate that our model generalizes to unseen set sizes and learns interesting subset relations without supervision. Our implementation is available at https://github.com/jw9730/setvae.
Compositional structures between parts and objects are inherent in natural scenes. Modeling such compositional hierarchies via unsupervised learning can bring various benefits such as interpretability and transferability, which are important in many
Generative adversarial training (GAT) is a recently introduced adversarial defense method. Previous works have focused on empirical evaluations of its application to training robust predictive models. In this paper we focus on theoretical understandi
Graphon is a nonparametric model that generates graphs with arbitrary sizes and can be induced from graphs easily. Based on this model, we propose a novel algorithmic framework called textit{graphon autoencoder} to build an interpretable and scalable
Constraint-based learning reduces the burden of collecting labels by having users specify general properties of structured outputs, such as constraints imposed by physical laws. We propose a novel framework for simultaneously learning these constrain
We address the problem of merging graph and feature-space information while learning a metric from structured data. Existing algorithms tackle the problem in an asymmetric way, by either extracting vectorized summaries of the graph structure or addin