ﻻ يوجد ملخص باللغة العربية
We address the problem of merging graph and feature-space information while learning a metric from structured data. Existing algorithms tackle the problem in an asymmetric way, by either extracting vectorized summaries of the graph structure or adding hard constraints to feature-space algorithms. Following a different path, we define a metric regression scheme where we train metric-constrained linear combinations of dissimilarity matrices. The idea is that the input matrices can be pre-computed dissimilarity measures obtained from any kind of available data (e.g. node attributes or edge structure). As the model inputs are distance measures, we do not need to assume the existence of any underlying feature space. Main challenge is that metric constraints (especially positive-definiteness and sub-additivity), are not automatically respected if, for example, the coefficients of the linear combination are allowed to be negative. Both positive and sub-additive constraints are linear inequalities, but the computational complexity of imposing them scales as O(D3), where D is the size of the input matrices (i.e. the size of the data set). This becomes quickly prohibitive, even when D is relatively small. We propose a new graph-based technique for optimizing under such constraints and show that, in some cases, our approach may reduce the original computational complexity of the optimization process by one order of magnitude. Contrarily to existing methods, our scheme applies to any (possibly non-convex) metric-constrained objective function.
Regression problems that have closed-form solutions are well understood and can be easily implemented when the dataset is small enough to be all loaded into the RAM. Challenges arise when data is too big to be stored in RAM to compute the closed form
Structured pruning is a well-known technique to reduce the storage size and inference cost of neural networks. The usual pruning pipeline consists of ranking the network internal filters and activations with respect to their contributions to the netw
Multiple instance data are sets or multi-sets of unordered elements. Using metrics or distances for sets, we propose an approach to several multiple instance learning tasks, such as clustering (unsupervised learning), classification (supervised learn
Generative modeling of set-structured data, such as point clouds, requires reasoning over local and global structures at various scales. However, adopting multi-scale frameworks for ordinary sequential data to a set-structured data is nontrivial as i
Despite the recent progress towards efficient multiple kernel learning (MKL), the structured output case remains an open research front. Current approaches involve repeatedly solving a batch learning problem, which makes them inadequate for large sca