ترغب بنشر مسار تعليمي؟ اضغط هنا

Generative Hierarchical Models for Parts, Objects, and Scenes

293   0   0.0 ( 0 )
 نشر من قبل Fei Deng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Compositional structures between parts and objects are inherent in natural scenes. Modeling such compositional hierarchies via unsupervised learning can bring various benefits such as interpretability and transferability, which are important in many downstream tasks. In this paper, we propose the first deep latent variable model, called RICH, for learning Representation of Interpretable Compositional Hierarchies. At the core of RICH is a latent scene graph representation that organizes the entities of a scene into a tree structure according to their compositional relationships. During inference, taking top-down approach, RICH is able to use higher-level representation to guide lower-level decomposition. This avoids the difficult problem of routing between parts and objects that is faced by bottom-up approaches. In experiments on images containing multiple objects with different part compositions, we demonstrate that RICH is able to learn the latent compositional hierarchy and generate imaginary scenes.



قيم البحث

اقرأ أيضاً

We present Sequential Attend, Infer, Repeat (SQAIR), an interpretable deep generative model for videos of moving objects. It can reliably discover and track objects throughout the sequence of frames, and can also generate future frames conditioning o n the current frame, thereby simulating expected motion of objects. This is achieved by explicitly encoding object presence, locations and appearances in the latent variables of the model. SQAIR retains all strengths of its predecessor, Attend, Infer, Repeat (AIR, Eslami et. al., 2016), including learning in an unsupervised manner, and addresses its shortcomings. We use a moving multi-MNIST dataset to show limitations of AIR in detecting overlapping or partially occluded objects, and show how SQAIR overcomes them by leveraging temporal consistency of objects. Finally, we also apply SQAIR to real-world pedestrian CCTV data, where it learns to reliably detect, track and generate walking pedestrians with no supervision.
Generative models are typically trained on grid-like data such as images. As a result, the size of these models usually scales directly with the underlying grid resolution. In this paper, we abandon discretized grids and instead parameterize individu al data points by continuous functions. We then build generative models by learning distributions over such functions. By treating data points as functions, we can abstract away from the specific type of data we train on and construct models that scale independently of signal resolution. To train our model, we use an adversarial approach with a discriminator that acts on continuous signals. Through experiments on both images and 3D shapes, we demonstrate that our model can learn rich distributions of functions independently of data type and resolution.
Deep generative models (e.g. GANs and VAEs) have been developed quite extensively in recent years. Lately, there has been an increased interest in the inversion of such a model, i.e. given a (possibly corrupted) signal, we wish to recover the latent vector that generated it. Building upon sparse representation theory, we define conditions that are applicable to any inversion algorithm (gradient descent, deep encoder, etc.), under which such generative models are invertible with a unique solution. Importantly, the proposed analysis is applicable to any trained model, and does not depend on Gaussian i.i.d. weights. Furthermore, we introduce two layer-wise inversion pursuit algorithms for trained generative networks of arbitrary depth, and accompany these with recovery guarantees. Finally, we validate our theoretical results numerically and show that our method outperforms gradient descent when inverting such generators, both for clean and corrupted signals.
Deep generative models reproduce complex empirical data but cannot extrapolate to novel environments. An intuitive idea to promote extrapolation capabilities is to enforce the architecture to have the modular structure of a causal graphical model, wh ere one can intervene on each module independently of the others in the graph. We develop a framework to formalize this intuition, using the principle of Independent Causal Mechanisms, and show how over-parameterization of generative neural networks can hinder extrapolation capabilities. Our experiments on the generation of human faces shows successive layers of a generator architecture implement independent mechanisms to some extent, allowing meaningful extrapolations. Finally, we illustrate that independence of mechanisms may be enforced during training to improve extrapolation.
A promising class of generative models maps points from a simple distribution to a complex distribution through an invertible neural network. Likelihood-based training of these models requires restricting their architectures to allow cheap computatio n of Jacobian determinants. Alternatively, the Jacobian trace can be used if the transformation is specified by an ordinary differential equation. In this paper, we use Hutchinsons trace estimator to give a scalable unbiased estimate of the log-density. The result is a continuous-time invertible generative model with unbiased density estimation and one-pass sampling, while allowing unrestricted neural network architectures. We demonstrate our approach on high-dimensional density estimation, image generation, and variational inference, achieving the state-of-the-art among exact likelihood methods with efficient sampling.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا