ﻻ يوجد ملخص باللغة العربية
The manipulation of topologically protected field configurations, already predicted and experimentally observed in non-centrosymmetric magnets, as skyrmions, merons and antimerons could definitely have potential applications in logic gate operations as carriers of information. Here, we present and elaborate a proof of concept on how to construct a three-input non-canonical majority gate on a kagome ferromagnet lacking inversion symmetry. By taking advantage of the existence of edge modes in a Kagome magnet, it is possible to create topological excitations as merons and antimerons at the edge of the material. Using atomistic spin dynamics simulations, we determine the precise physical conditions for the creation and annihilation of merons and antimerons and, in a second stage, we describe the majority gate functionality.
Realizing stable two-dimensional (2D) Dirac points against spin-orbit coupling (SOC) has attracted much attention because it provides a platform to study the unique transport properties. In previous work, Young and Kane [Phys. Rev. Lett. textbf{115},
The study of atomically thin ferromagnetic crystals has led to the discovery of unusual magnetic behaviour and provided insight into the magnetic properties of bulk materials. However, the experimental techniques that have been used to explore ferrom
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and two-fold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems
We report on experimental evidence of directed electron transport, induced by external linear-polarized microwave irradiation, in a two-dimensional spatially-periodic asymmetrical system called ratchet. The broken spatial symmetry was introduced in a
We report an efficient technique to induce gate-tunable two-dimensional superlattices in graphene by the combined action of a back gate and a few-layer graphene patterned bottom gate complementary to existing methods. The patterned gates in our appro