ﻻ يوجد ملخص باللغة العربية
We report on experimental evidence of directed electron transport, induced by external linear-polarized microwave irradiation, in a two-dimensional spatially-periodic asymmetrical system called ratchet. The broken spatial symmetry was introduced in a high mobility two-dimensional electron gas based on AlGaAs/GaAs heterojunction, by patterning an array of artificial semi-discs-shaped antidots. We show that the direction of the transport is efficiently changed by microwave polarization. The dependence of the effect on magnetic field and temperature is investigated. This represents a significant step towards the realization of new microwave detectors and current generators.
Realizing stable two-dimensional (2D) Dirac points against spin-orbit coupling (SOC) has attracted much attention because it provides a platform to study the unique transport properties. In previous work, Young and Kane [Phys. Rev. Lett. textbf{115},
We investigate the Nernst effect in a mesoscopic two-dimensional electron system (2DES) at low magnetic fields, before the onset of Landau level quantization. The overall magnitude of the Nernst signal agrees well with semi-classical predictions. We
The manipulation of topologically protected field configurations, already predicted and experimentally observed in non-centrosymmetric magnets, as skyrmions, merons and antimerons could definitely have potential applications in logic gate operations
We study the response of a weakly damped vibrational mode of a nanostring resonator to a moderately strong resonant driving force. Because of the geometry of the experiment, the studied flexural vibrations lack inversion symmetry. As we show, this le
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and two-fold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems