ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional Dirac Semimetals without Inversion Symmetry

291   0   0.0 ( 0 )
 نشر من قبل Hu Xu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Realizing stable two-dimensional (2D) Dirac points against spin-orbit coupling (SOC) has attracted much attention because it provides a platform to study the unique transport properties. In previous work, Young and Kane [Phys. Rev. Lett. textbf{115}, 126803 (2015)] proposed stable 2D Dirac points with SOC, in which the Berry curvature and edge states vanish due to the coexistence of inversion and time-reversal symmetries. Herein, using the tight-binding model and k$cdot$p effective Hamiltonian, we present that 2D Dirac points can survive in the presence of SOC without inversion symmetry. Such 2D Dirac semimetals possess nonzero Berry curvature near the crossing nodes, and two edge states are terminated at one pair of Dirac points. In addition, according to symmetry arguments and high-throughput first-principles calculations, we identify a family of ideal 2D Dirac semimetals, which has nonzero Berry curvature in the vicinity of Dirac points and visible edge states, thus facilitating the experimental observations. Our work shows that 2D Dirac points can emerge without inversion symmetry, which not only enriches the classification of 2D topological semimetals but also provides a promising avenue to observe exotic transport phenomena beyond graphene, e.g., nonlinear Hall effect.



قيم البحث

اقرأ أيضاً

It has recently been realized that the first-order moment of the Berry curvature, namely the Berry curvature dipole (BCD) can give rise to non-linear current in a wide variety of time-reversal invariant and non-centrosymmetric materials. While the BC D in two-dimensional Dirac systems is known to be finite only in the presence of either substantial spin-orbit coupling where low-energy Dirac quasiparticles form tilted cones or higher order warping of the Fermi surface, we argue that the low-energy Dirac quasiparticles arising from the merging of a pair of Dirac points without any tilt or warping of the Fermi surface can lead to a non-zero BCD. Remarkably, in such systems, the BCD is found to be independent of Dirac velocity as opposed to the Dirac dispersion with a tilt or warping effects. We further show that the proposed systems can naturally host helicity-dependent photocurrent due to their linear momentum-dependent Berry curvatures. Finally, we discuss an important byproduct of this work, i.e., nonlinear anomalous Nernst effect as a second-order thermal response.
Two-dimensional Dirac semimetals have attracted much attention because of their linear energy dispersion and non-trivial Berry phase. Graphene-like 2D Dirac materials are gapless only within certain approximations, e.g., if spin-orbit coupling (SOC) is neglected. It has recently been reported that materials with nonsymmorphic crystal lattice possess symmetry-enforced Dirac-like band dispersion around certain high-symmetry momenta even in the presence of SOC. Here we calculate the optical absorption coefficient of nonsymmorphic semimetals, such as $alpha$-bismuthene, which hosts two anisotropic Dirac cones with different Fermi velocities along $x$ and $y$ directions.We find that the optical absorption coefficient depends strongly on the anisotropy factor and the photon polarization. When a magnetic field is applied perpendicular to the plane of the material, the absorption coefficient also depends on an internal parameter we termed the mixing angle of the band structure. We further find that an in-plane magnetic field, while leaving the system gapless, can induce a Van-Hove singularity in the joint density of states: this causes a significant enhancement of the optical absorption at the frequency of the singularity for one direction of polarization but not for the orthogonal one, making the optical properties even more strongly dependent on polarization. Due to the anisotropy present in our model, the Dirac cones at two high-symmetry momenta in the Brillouin zone contribute very differently to the optical absorbance. Consequently, it might be possible to preferentially populate one valley or the other by varying photon polarization and frequency. These results suggest that nonsymmorphic 2D Dirac semimetals are excellent candidate materials for tunable magneto-optic devices.
The manipulation of topologically protected field configurations, already predicted and experimentally observed in non-centrosymmetric magnets, as skyrmions, merons and antimerons could definitely have potential applications in logic gate operations as carriers of information. Here, we present and elaborate a proof of concept on how to construct a three-input non-canonical majority gate on a kagome ferromagnet lacking inversion symmetry. By taking advantage of the existence of edge modes in a Kagome magnet, it is possible to create topological excitations as merons and antimerons at the edge of the material. Using atomistic spin dynamics simulations, we determine the precise physical conditions for the creation and annihilation of merons and antimerons and, in a second stage, we describe the majority gate functionality.
96 - Alberto Cortijo 2016
We show that, under the effect of an external magnetic field, a photogalvanic effect and the generation of second harmonic wave can be induced in inversion-symmetric and time reversal invariant Dirac semimetals. The mechanism responsible of these non linear optical responses is the magnetochiral effect. The origin of this magnetochiral effect is the band bending of the dispersion relation in real Dirac semimetals. Some observable consequences of this phenomenon are the appearance of a dc current on the surface of the system when it is irradiated with linearly polarized light or a rotation of the polarization plane of the reflected second harmonic wave.
Second harmonic generation (SHG) is a fundamental nonlinear optical phenomenon widely used both for experimental probes of materials and for application to optical devices. Even-order nonlinear optical responses including SHG generally require breaki ng of inversion symmetry, and thus have been utilized to study noncentrosymmetric materials. Here, we study theoretically the SHG in inversion-symmetric Dirac and Weyl semimetals under a DC current which breaks the inversion symmetry by creating a nonequilibrium steady state. Based on analytic and numerical calculations, we find that Dirac and Weyl semimetals exhibit strong SHG upon application of finite current. Our experimental estimation for a Dirac semimetal Cd$_3$As$_2$ and a magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ suggests that the induced susceptibility $chi^{(2)}$ for practical applied current densities can reach $10^5~mathrm{pm}cdotmathrm{V}^{-1}$ with mid-IR or far-IR light. This value is 10$^2$-10$^4$ times larger than those of typical nonlinear optical materials. We also discuss experimental approaches to observe the current-induced SHG and comment on current-induced SHG in other topological semimetals in connection with recent experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا