ﻻ يوجد ملخص باللغة العربية
We present a method of defining projectors in the virtual Temperley-Lieb algebra, that generalizes the Jones-Wenzl projectors in Temperley-Lieb algebra. We show that the projectors have similar properties with the Jones-Wenzl projectors, and contain an extra property which is associated with the virtual generator elements, that is, the product of a projector with a virtual generator is unchanged. We also show the uniqueness of the projector $f_n$ in terms of its axiomatic properties in the virtual Temperley-Lieba algebra $VTL_n(d)$. Finally, we find the coefficients of $f_n$ and give an explicit formula for the projector $f_n$.
Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a spe
The hamiltonian of the $N$-state superintegrable chiral Potts (SICP) model is written in terms of a coupled algebra defined by $N-1$ types of Temperley-Lieb generators. This generalises a previous result for $N=3$ obtained by J. F. Fjelstad and T. Mr
The braid group appears in many scientific fields and its representations are instrumental in understanding topological quantum algorithms, topological entropy, classification of manifolds and so on. In this work, we study planer diagrams which are K
In a previous paper, we presented an infinite dimensional associative diagram algebra that satisfies the relations of the generalized Temperley--Lieb algebra having a basis indexed by the fully commutative elements of the Coxeter group of type affine
The Temperley--Lieb algebra is a finite dimensional associative algebra that arose in the context of statistical mechanics and occurs naturally as a quotient of the Hecke algebra arising from a Coxeter group of type $A$. It is often realized in terms