ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagram calculus for a type affine $C$ Temperley--Lieb algebra, II

208   0   0.0 ( 0 )
 نشر من قبل Dana Ernst
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Dana C. Ernst




اسأل ChatGPT حول البحث

In a previous paper, we presented an infinite dimensional associative diagram algebra that satisfies the relations of the generalized Temperley--Lieb algebra having a basis indexed by the fully commutative elements of the Coxeter group of type affine $C$. We also provided an explicit description of a basis for the diagram algebra. In this paper, we show that the diagrammatic representation is faithful and establish a correspondence between the basis diagrams and the so-called monomial basis of the Temperley--Lieb algebra of type affine $C$.



قيم البحث

اقرأ أيضاً

The Temperley--Lieb algebra is a finite dimensional associative algebra that arose in the context of statistical mechanics and occurs naturally as a quotient of the Hecke algebra arising from a Coxeter group of type $A$. It is often realized in terms of a certain diagram algebra, where every diagram can be written as a product of simple diagrams. These factorizations correspond precisely to factorizations of the so-called fully commutative elements of the Coxeter group that index a particular basis. Given a reduced factorization of a fully commutative element, it is straightforward to construct the corresponding diagram. On the other hand, it is generally difficult to reconstruct the factorization given an arbitrary diagram. We present an efficient algorithm for obtaining a reduced factorization for a given diagram.
We present a method of defining projectors in the virtual Temperley-Lieb algebra, that generalizes the Jones-Wenzl projectors in Temperley-Lieb algebra. We show that the projectors have similar properties with the Jones-Wenzl projectors, and contain an extra property which is associated with the virtual generator elements, that is, the product of a projector with a virtual generator is unchanged. We also show the uniqueness of the projector $f_n$ in terms of its axiomatic properties in the virtual Temperley-Lieba algebra $VTL_n(d)$. Finally, we find the coefficients of $f_n$ and give an explicit formula for the projector $f_n$.
The hamiltonian of the $N$-state superintegrable chiral Potts (SICP) model is written in terms of a coupled algebra defined by $N-1$ types of Temperley-Lieb generators. This generalises a previous result for $N=3$ obtained by J. F. Fjelstad and T. Mr {a}nsson [J. Phys. A {bf 45} (2012) 155208]. A pictorial representation of a related coupled algebra is given for the $N=3$ case which involves a generalisation of the pictorial presentation of the Temperley-Lieb algebra to include a pole around which loops can become entangled. For the two known representations of this algebra, the $N=3$ SICP chain and the staggered spin-1/2 XX chain, closed (contractible) loops have weight $sqrt{3}$ and weight $2$, respectively. For both representations closed (non-contractible) loops around the pole have weight zero. The pictorial representation provides a graphical interpretation of the algebraic relations. A key ingredient in the resolution of diagrams is a crossing relation for loops encircling a pole which involves the parameter $rho= e^{ 2pi mathrm{i}/3}$ for the SICP chain and $rho=1$ for the staggered XX chain. These $rho$ values are derived assuming the Kauffman bracket skein relation.
An explicit isomorphism between the $R$-matrix and Drinfeld presentations of the quantum affine algebra in type $A$ was given by Ding and I. Frenkel (1993). We show that this result can be extended to types $B$, $C$ and $D$ and give a detailed constr uction for type $C$ in this paper. In all classical types the Gauss decomposition of the generator matrix in the $R$-matrix presentation yields the Drinfeld generators. To prove that the resulting map is an isomorphism we follow the work of E. Frenkel and Mukhin (2002) in type $A$ and employ the universal $R$-matrix to construct the inverse map. A key role in our construction is played by a homomorphism theorem which relates the quantum affine algebra of rank $n-1$ in the $R$-matrix presentation with a subalgebra of the corresponding algebra of rank $n$ of the same type.
204 - C.-L. Ho , A.I. Solomon , C.-H.Oh 2010
Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a spe cific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate {it directly}, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا