ﻻ يوجد ملخص باللغة العربية
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the Rashomon set of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
ML models often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification as a key reason for these failures. An ML pipeline is underspecified when it can return many predictors with equivalently
With a mortality rate of 5.4 million lives worldwide every year and a healthcare cost of more than 16 billion dollars in the USA alone, sepsis is one of the leading causes of hospital mortality and an increasing concern in the ageing western world. R
The black-box nature of machine learning models hinders the deployment of some high-accuracy models in medical diagnosis. It is risky to put ones life in the hands of models that medical researchers do not fully understand. However, through model int
We present a brief history of the field of interpretable machine learning (IML), give an overview of state-of-the-art interpretation methods, and discuss challenges. Research in IML has boomed in recent years. As young as the field is, it has over 20
Machine learning (ML) is increasingly being adopted in a wide variety of application domains. Usually, a well-performing ML model, especially, emerging deep neural network model, relies on a large volume of training data and high-powered computationa