ترغب بنشر مسار تعليمي؟ اضغط هنا

MGP-AttTCN: An Interpretable Machine Learning Model for the Prediction of Sepsis

161   0   0.0 ( 0 )
 نشر من قبل Vincent Fortuin
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

With a mortality rate of 5.4 million lives worldwide every year and a healthcare cost of more than 16 billion dollars in the USA alone, sepsis is one of the leading causes of hospital mortality and an increasing concern in the ageing western world. Recently, medical and technological advances have helped re-define the illness criteria of this disease, which is otherwise poorly understood by the medical society. Together with the rise of widely accessible Electronic Health Records, the advances in data mining and complex nonlinear algorithms are a promising avenue for the early detection of sepsis. This work contributes to the research effort in the field of automated sepsis detection with an open-access labelling of the medical MIMIC-III data set. Moreover, we propose MGP-AttTCN: a joint multitask Gaussian Process and attention-based deep learning model to early predict the occurrence of sepsis in an interpretable manner. We show that our model outperforms the current state-of-the-art and present evidence that different labelling heuristics lead to discrepancies in task difficulty. For instance, when predicting sepsis five hours prior to onset on our new realistic labels, our proposed model achieves an area under the ROC curve of 0.660 and an area under the PR curve of 0.483, whereas the (less interpretable) previous state-of-the-art model (MGP-TCN) achieves 0.635 AUROC and 0.460 AUPR and the popular commercial InSight model achieves 0.490 AUROC and 0.359 AUPR.



قيم البحث

اقرأ أيضاً

The black-box nature of machine learning models hinders the deployment of some high-accuracy models in medical diagnosis. It is risky to put ones life in the hands of models that medical researchers do not fully understand. However, through model int erpretation, black-box models can promptly reveal significant biomarkers that medical practitioners may have overlooked due to the surge of infected patients in the COVID-19 pandemic. This research leverages a database of 92 patients with confirmed SARS-CoV-2 laboratory tests between 18th Jan. 2020 and 5th Mar. 2020, in Zhuhai, China, to identify biomarkers indicative of severity prediction. Through the interpretation of four machine learning models, decision tree, random forests, gradient boosted trees, and neural networks using permutation feature importance, Partial Dependence Plot (PDP), Individual Conditional Expectation (ICE), Accumulated Local Effects (ALE), Local Interpretable Model-agnostic Explanations (LIME), and Shapley Additive Explanation (SHAP), we identify an increase in N-Terminal pro-Brain Natriuretic Peptide (NTproBNP), C-Reaction Protein (CRP), and lactic dehydrogenase (LDH), a decrease in lymphocyte (LYM) is associated with severe infection and an increased risk of death, which is consistent with recent medical research on COVID-19 and other research using dedicated models. We further validate our methods on a large open dataset with 5644 confirmed patients from the Hospital Israelita Albert Einstein, at S~ao Paulo, Brazil from Kaggle, and unveil leukocytes, eosinophils, and platelets as three indicative biomarkers for COVID-19.
Sepsis is a life-threatening condition that seriously endangers millions of people over the world. Hopefully, with the widespread availability of electronic health records (EHR), predictive models that can effectively deal with clinical sequential da ta increase the possibility to predict sepsis and take early preventive treatment. However, the early prediction is challenging because patients sequential data in EHR contains temporal interactions of multiple clinical events. And capturing temporal interactions in the long event sequence is hard for traditional LSTM. Rather than directly applying the LSTM model to the event sequences, our proposed model firstly aggregates heterogeneous clinical events in a short period and then captures temporal interactions of the aggregated representations with LSTM. Our proposed Heterogeneous Event Aggregation can not only shorten the length of clinical event sequence but also help to retain temporal interactions of both categorical and numerical features of clinical events in the multiple heads of the aggregation representations. In the PhysioNet/Computing in Cardiology Challenge 2019, with the team named PKU_DLIB, our proposed model, in high efficiency, achieved utility score (0.321) in the full test set.
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial t opic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the Rashomon set of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
Sepsis is a dangerous condition that is a leading cause of patient mortality. Treating sepsis is highly challenging, because individual patients respond very differently to medical interventions and there is no universally agreed-upon treatment for s epsis. In this work, we explore the use of continuous state-space model-based reinforcement learning (RL) to discover high-quality treatment policies for sepsis patients. Our quantitative evaluation reveals that by blending the treatment strategy discovered with RL with what clinicians follow, we can obtain improved policies, potentially allowing for better medical treatment for sepsis.
We present a novel methodology to jointly perform multi-task learning and infer intrinsic relationship among tasks by an interpretable and sparse graph. Unlike existing multi-task learning methodologies, the graph structure is not assumed to be known a priori or estimated separately in a preprocessing step. Instead, our graph is learned simultaneously with model parameters of each task, thus it reflects the critical relationship among tasks in the specific prediction problem. We characterize graph structure with its weighted adjacency matrix and show that the overall objective can be optimized alternatively until convergence. We also show that our methodology can be simply extended to a nonlinear form by being embedded into a multi-head radial basis function network (RBFN). Extensive experiments, against six state-of-the-art methodologies, on both synthetic data and real-world applications suggest that our methodology is able to reduce generalization error, and, at the same time, reveal a sparse graph over tasks that is much easier to interpret.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا