ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges

292   0   0.0 ( 0 )
 نشر من قبل Christoph Molnar
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a brief history of the field of interpretable machine learning (IML), give an overview of state-of-the-art interpretation methods, and discuss challenges. Research in IML has boomed in recent years. As young as the field is, it has over 200 years old roots in regression modeling and rule-based machine learning, starting in the 1960s. Recently, many new IML methods have been proposed, many of them model-agnostic, but also interpretation techniques specific to deep learning and tree-based ensembles. IML methods either directly analyze model components, study sensitivity to input perturbations, or analyze local or global surrogate approximations of the ML model. The field approaches a state of readiness and stability, with many methods not only proposed in research, but also implemented in open-source software. But many important challenges remain for IML, such as dealing with dependent features, causal interpretation, and uncertainty estimation, which need to be resolved for its successful application to scientific problems. A further challenge is a missing rigorous definition of interpretability, which is accepted by the community. To address the challenges and advance the field, we urge to recall our roots of interpretable, data-driven modeling in statistics and (rule-based) ML, but also to consider other areas such as sensitivity analysis, causal inference, and the social sciences.



قيم البحث

اقرأ أيضاً

The ICML 2013 Workshop on Challenges in Representation Learning focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for th ese challenges and summarize the results of the competitions. We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions.
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial t opic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the Rashomon set of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
Academic research and the financial industry have recently paid great attention to Machine Learning algorithms due to their power to solve complex learning tasks. In the field of firms default prediction, however, the lack of interpretability has pre vented the extensive adoption of the black-box type of models. To overcome this drawback and maintain the high performances of black-boxes, this paper relies on a model-agnostic approach. Accumulated Local Effects and Shapley values are used to shape the predictors impact on the likelihood of default and rank them according to their contribution to the model outcome. Prediction is achieved by two Machine Learning algorithms (eXtreme Gradient Boosting and FeedForward Neural Network) compared with three standard discriminant models. Results show that our analysis of the Italian Small and Medium Enterprises manufacturing industry benefits from the overall highest classification power by the eXtreme Gradient Boosting algorithm without giving up a rich interpretation framework.
216 - Paul Todorov 2019
We review some practical and philosophical questions raised by the use of machine learning in creative practice. Beyond the obvious problems regarding plagiarism and authorship, we argue that the novelty in AI Art relies mostly on a narrow machine le arning contribution : manifold approximation. Nevertheless, this contribution creates a radical shift in the way we have to consider this movement. Is this omnipotent tool a blessing or a curse for the artists?
Evaluating the inherent difficulty of a given data-driven classification problem is important for establishing absolute benchmarks and evaluating progress in the field. To this end, a natural quantity to consider is the emph{Bayes error}, which measu res the optimal classification error theoretically achievable for a given data distribution. While generally an intractable quantity, we show that we can compute the exact Bayes error of generative models learned using normalizing flows. Our technique relies on a fundamental result, which states that the Bayes error is invariant under invertible transformation. Therefore, we can compute the exact Bayes error of the learned flow models by computing it for Gaussian base distributions, which can be done efficiently using Holmes-Diaconis-Ross integration. Moreover, we show that by varying the temperature of the learned flow models, we can generate synthetic datasets that closely resemble standard benchmark datasets, but with almost any desired Bayes error. We use our approach to conduct a thorough investigation of state-of-the-art classification models, and find that in some -- but not all -- cases, these models are capable of obtaining accuracy very near optimal. Finally, we use our method to evaluate the intrinsic hardness of standard benchmark datasets, and classes within those datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا