ﻻ يوجد ملخص باللغة العربية
When a low flux of time-frequency-entangled photon pairs (EPP) illuminates a two-photon transition, the rate of two-photon absorption (TPA) can be enhanced considerably by the quantum nature of photon number correlations and frequency correlations. We present a quantum-theoretic derivation of entangled TPA (ETPA) and calculate an upper bound on the amount of quantum enhancement that is possible in such systems. The derived bounds indicate that in order to observe ETPA the experiments would need to operate at a combination of significantly higher rates of EPP illumination, molecular concentrations, and conventional TPA cross sections than are achieved in typical experiments.
Entangled two-photon absorption (ETPA) has recently become a topic of lively debate, mainly due to the apparent inconsistencies in the experimentally-reported ETPA cross sections of organic molecules. In this work, we provide a thorough experimental
It is well known that energy-time entanglement can enhance two photon absorption (TPA) by simultaneously optimizing the two photon resonance and the coincidence rate of photons at the absorber. However, the precise relation between entanglement and t
Marine microorganisms often reach high swimming speeds, either to take advantage of evanescent nutrient patches or to beat Brownian forces. Since this implies that a sizable part of their energetic budget must be allocated to motion, it is reasonable
While two-photon absorption (TPA) and other forms of nonlinear interactions of molecules with isolated time-frequency-entangled photon pairs (EPP) have been predicted to display a variety of fascinating effects, their potential use in practical quant
Two-photon absorption (TPA) is of fundamental importance in super-resolution imaging and spectroscopy. Its nonlinear character allows for the prospect of using quantum resources, such as entanglement, to improve measurement precision or to gain new i