ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum metrology of two-photon absorption

61   0   0.0 ( 0 )
 نشر من قبل Frank Schlawin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-photon absorption (TPA) is of fundamental importance in super-resolution imaging and spectroscopy. Its nonlinear character allows for the prospect of using quantum resources, such as entanglement, to improve measurement precision or to gain new information on, e.g., ultrafast molecular dynamics. Here, we establish the metrological properties of nonclassical squeezed light sources for precision measurements of TPA cross sections. We find that there is no fundamental limit for the precision achievable with squeezed states in the limit of very small cross sections. Considering the most relevant measurement strategies -- namely photon counting and quadrature measurements -- we determine the quantum advantage provided by squeezed states as compared to coherent states. We find that squeezed states outperform the precision achievable by coherent states when performing quadrature measurements, which provide improved scaling of the Fisher information with respect to the mean photon number $sim n^4$. Due to the interplay of the incoherent nature and the nonlinearity of the TPA process, unusual scaling can also be obtained with coherent states, which feature a $sim n^3$ scaling in both quadrature and photon-counting measurements.



قيم البحث

اقرأ أيضاً

Two-photon absorption (TPA) and other nonlinear interactions of molecules with time-frequency-entangled photon pairs (EPP) has been predicted to display a variety of fascinating effects. Therefore, their potential use in practical quantum-enhanced mo lecular spectroscopy requires close examination. This paper presents in tutorial style a detailed theoretical study of one- and two-photon absorption by molecules, focusing on how to treat the quantum nature of light. We review some basic quantum optics theory, then we review the density-matrix (Liouville) derivation of molecular optical response, emphasizing how to incorporate quantum states of light into the treatment. For illustration we treat in detail the TPA of photon pairs created by spontaneous parametric down conversion, with an emphasis on how quantum light TPA differs from that with classical light. In particular, we treat the question of how much enhancement of the TPA rate can be achieved using entangled states. The paper includes review of known theoretical methods and results, as well as some extensions, especially the comparison of TPA processes that occur via far-off-resonant intermediate states only and those that involve off-resonant intermediate state by virtue of dephasing processes. A brief discussion of the main challenges facing experimental studies of entangled TPA is also given.
Probabilistic amplification through photon addition, at the output of an Mach-Zehnder interferometer is discussed for a coherent input state. When a metric of signal to noise ratio is considered, nondeterministic, noiseless amplification of a coheren t state shows improvement over a standard coherent state, for the general addition of $m$ photons. The efficiency of realizable implementation of photon addition is also considered and shows how the collected statistics of a post selected state, depend on this efficiency. We also consider the effects of photon loss and inefficient detectors.
Two-photon excited fluorescence (TPEF) is a standard technique in modern microscopy but still affected by photo-damage of the probe. It was proposed that TPEF can be enhanced by using entangled photons, but has proven to be challenging. Recently it w as shown that some features of entangled photons can be mimicked with thermal light, which finds application in ghost imaging, sub-wavelength lithography and metrology. Here, we utilize true thermal light from a super-luminescence diode to demonstrate enhanced TPEF compared to coherent light using two common fluorophores and luminescent quantum dots. We find that the two-photon absorption rate is directly proportional to the measured degree of second-order coherence, as predicted by theory. Our results show that photon bunching can be exploited in two-photon microscopy with the photon statistic providing a new degree of freedom.
We investigate the advantage of coherent superposition of two different coded channels in quantum metrology. In a continuous variable system, we show that the Heisenberg limit $1/N$ can be beaten by the coherent superposition without the help of inde finite causal order. And in parameter estimation, we demonstrate that the strategy with the coherent superposition can perform better than the strategy with quantum textsc{switch} which can generate indefinite causal order. We analytically obtain the general form of estimation precision in terms of the quantum Fisher information and further prove that the nonlinear Hamiltonian can improve the estimation precision and make the measurement uncertainty scale as $1/N^m$ for $mgeq2$. Our results can help to construct a high-precision measurement equipment, which can be applied to the detection of coupling strength and the test of time dilation and the modification of the canonical commutation relation.
We address the textbook problem of dynamics of a spin placed in a dc magnetic field and subjected to an ac drive. If the drive is polarized in the plane perpendicular to the dc field, the drive photons are resonantly absorbed when the spacing between the Zeeman levels is close to the photon energy. This is the only resonance when the drive is circularly polarized. For linearly polarized drive, additional resonances corresponding to absorption of three, five, and multiple odd numbers of photons is possible. Interaction with the environment causes the broadening of the absorption lines. We demonstrate that the interaction with environment enables the forbidden two-photon absorption. We adopt a model of the environment in the form of random telegraph noise produced by a single fluctuator. As a result of the synchronous time fluctuations of different components of the random field, the shape of the two-photon absorption line is non-Lorentzian and depends dramatically on the drive amplitude. This shape is a monotonic curve at strong drive, while, at weak drive, it develops a two-peak structure reminiscent of an induced transparency on resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا