ﻻ يوجد ملخص باللغة العربية
We present a new set of 84 Broad absorption line (BAL) quasars ( 1.7 $<$ zem $<$ 4.4) exhibiting an appearance of civ BAL troughs over 0.3$-$4.8 rest-frame years by comparing the Sloan Digital Sky Survey Data Release (SDSSDR)-7, SDSSDR-12, and SDSSDR-14 quasar catalogs. We contrast the nature of BAL variability in this appearing BAL quasar sample with a disappearing BAL quasar sample studied in literature by comparing the quasars intrinsic, BAL trough, and continuum parameters between the two samples. We find that appearing BAL quasars have relatively higher redshift and smaller probed timescales as compared to the disappearing BAL quasars. To mitigate the effect of any redshift bias, we created control samples of appearing and disappearing BAL quasars that have similar redshift distribution. We find that the appearing BAL quasars are relatively brighter and have shallower and wider BAL troughs compared to the disappearing BAL sample. The distribution of quasar continuum variability parameters between the two samples is clearly separated, with the appearance of the BAL troughs being accompanied by the dimming of the continuum and vice versa. Spectral index variations in the two samples also point to the anti-correlation between the BAL trough and continuum variations consistent with the bluer when brighter trend in quasars. We show that the intrinsic dust model is less likely to be a favorable scenario in explaining BAL appearance/disappearance. Our analysis suggests that the extreme variations of BAL troughs like BAL appearance/disappearance are mainly driven by changes in the ionization conditions of the absorbing gas.
We report the discovery in the Sloan Digital Sky Survey and the SDSS-III Baryon Oscillation Spectroscopic Survey of seventeen broad absorption line (BAL) quasars with high-ionization troughs that include absorption redshifted relative to the quasar r
Our recently reported lack of Intra-Night Optical Variability (INOV) among Broad-Absorption-Line (BAL) quasars exhibiting some blazar-like radio properties, either questions polar ejection of BAL clouds, and/or hints at a physical state of the relati
Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observers line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-qu
We report spectropolarimetry of 30 radio-selected broad absorption line (BAL) quasars with the Keck Observatory, 25 from the sample of Becker et al. (2000). Both high and low-ionization BAL quasars are represented, with redshifts ranging from 0.5 to
It has been argued that certain broad absorption line quasars are viewed within 35 degrees of the axis of a relativistic radio jet, based on two-epoch radio flux density variability. It is true if the surface brightness of a radio source is observed