ترغب بنشر مسار تعليمي؟ اضغط هنا

Appearance vs Disappearance of broad absorption line troughs in quasars

310   0   0.0 ( 0 )
 نشر من قبل Sapna Mishra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new set of 84 Broad absorption line (BAL) quasars ( 1.7 $<$ zem $<$ 4.4) exhibiting an appearance of civ BAL troughs over 0.3$-$4.8 rest-frame years by comparing the Sloan Digital Sky Survey Data Release (SDSSDR)-7, SDSSDR-12, and SDSSDR-14 quasar catalogs. We contrast the nature of BAL variability in this appearing BAL quasar sample with a disappearing BAL quasar sample studied in literature by comparing the quasars intrinsic, BAL trough, and continuum parameters between the two samples. We find that appearing BAL quasars have relatively higher redshift and smaller probed timescales as compared to the disappearing BAL quasars. To mitigate the effect of any redshift bias, we created control samples of appearing and disappearing BAL quasars that have similar redshift distribution. We find that the appearing BAL quasars are relatively brighter and have shallower and wider BAL troughs compared to the disappearing BAL sample. The distribution of quasar continuum variability parameters between the two samples is clearly separated, with the appearance of the BAL troughs being accompanied by the dimming of the continuum and vice versa. Spectral index variations in the two samples also point to the anti-correlation between the BAL trough and continuum variations consistent with the bluer when brighter trend in quasars. We show that the intrinsic dust model is less likely to be a favorable scenario in explaining BAL appearance/disappearance. Our analysis suggests that the extreme variations of BAL troughs like BAL appearance/disappearance are mainly driven by changes in the ionization conditions of the absorbing gas.



قيم البحث

اقرأ أيضاً

125 - Patrick B. Hall 2013
We report the discovery in the Sloan Digital Sky Survey and the SDSS-III Baryon Oscillation Spectroscopic Survey of seventeen broad absorption line (BAL) quasars with high-ionization troughs that include absorption redshifted relative to the quasar r est frame. The redshifted troughs extend to velocities up to v=12,000 km/s and the trough widths exceed 3000 km/s in all but one case. Approximately 1 in 1000 BAL quasars with blueshifted C IV absorption also has redshifted C IV absorption; objects with C IV absorption present only at redshifted velocities are roughly four times rarer. In more than half of our objects, redshifted absorption is seen in C II or Al III as well as C IV, making low-ionization absorption at least ten times more common among BAL quasars with redshifted troughs than among standard BAL quasars. However, the C IV absorption equivalent widths in our objects are on average smaller than those of standard BAL quasars with low-ionization absorption. We consider several possible ways of generating redshifted absorption. The two most likely possibilities may be at work simultaneously, in the same objects or in different ones. Rotationally dominated outflows seen against a quasars extended continuum source can produce redshifted and blueshifted absorption, but variability consistent with this scenario is seen in only one of the four objects with multiple spectra. The infall of relatively dense and low-ionization gas to radii as small as 400 Schwarzschild radii can in principle explain the observed range of trough profiles, but current models do not easily explain the origin and survival of such gas. Whatever the origin(s) of the absorbing gas in these objects, it must be located at small radii to explain its large redshifted velocities, and thus offers a novel probe of the inner regions of quasars.
Our recently reported lack of Intra-Night Optical Variability (INOV) among Broad-Absorption-Line (BAL) quasars exhibiting some blazar-like radio properties, either questions polar ejection of BAL clouds, and/or hints at a physical state of the relati vistic jet modified due to interaction with the thermal BAL wind on the innermost sub-parsec scale. As a robust check on this unexpected finding for the BAL_blazar candidates, we report here the INOV study of a new and much more rigorously defined comparison sample consisting of 9 normal (non-BAL) blazars, matched in both magnitude and redshift to the aforementioned sample of BAL_blazar candidates. The present campaign spanning 27 sessions yields an INOV duty cycle of ~23% for the comparison sample of normal blazars, employing the enhanced F-test. However, even this more sensitive test does not detect INOV for the sample of BAL_blazar candidates. This stark INOV contrast found here between the BAL_blazar candidates and normal blazars can probably be traced to a physical interaction of the relativistic jet with the thermal wind, within sub-parsec range from the nucleus. The consequent enfeebling of the jet would additionally explain the striking deficiency among BAL quasars of powerful FR II radio lobes on the much larger scale of 10-100 kpc.
Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observers line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-qu iet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5$<z<$3.5) that allowed us to observe the Mg II and H$beta$ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables.
We report spectropolarimetry of 30 radio-selected broad absorption line (BAL) quasars with the Keck Observatory, 25 from the sample of Becker et al. (2000). Both high and low-ionization BAL quasars are represented, with redshifts ranging from 0.5 to 2.5. The spectropolarimetric properties of radio-selected BAL quasars are very similar to those of radio-quiet BAL quasars: a sizeable fraction (20%) show large continuum polarization (2-10%) usually rising toward short wavelengths, emission lines are typically less polarized than the continuum, and absorption line troughs often show large polarization jumps. There are no significant correlations between polarization properties and radio properties, including those indicative of system orientation, suggesting that BAL quasars are not simply normal quasars seen from an edge-on perspective.
It has been argued that certain broad absorption line quasars are viewed within 35 degrees of the axis of a relativistic radio jet, based on two-epoch radio flux density variability. It is true if the surface brightness of a radio source is observed to change by a sufficiently large amount, the inferred brightness temperature will exceed 10^12 K and Doppler beaming in our direction must be invoked to avoid a Compton cooling catastrophe. However, flux density changes cannot be linked to surface brightness changes without knowledge of the size of the source. If an optically thick source changes in projected area but not surface brightness, its brightness temperature is constant and its flux variability yields no constraint on its orientation. Moreover, as pointed out by Rees, spherical expansion of an emission source at relativistic speeds yields an apparently superluminal increase in its projected area, which can explain short-timescale flux density variability without requiring a relativistic jet oriented near to our line of sight. Therefore, two-epoch radio flux density variability by itself cannot unambiguously identify sources with jets directed towards us. Only VLBI imaging can robustly determine the fraction of broad absorption line quasars which are polar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا