ﻻ يوجد ملخص باللغة العربية
Our recently reported lack of Intra-Night Optical Variability (INOV) among Broad-Absorption-Line (BAL) quasars exhibiting some blazar-like radio properties, either questions polar ejection of BAL clouds, and/or hints at a physical state of the relativistic jet modified due to interaction with the thermal BAL wind on the innermost sub-parsec scale. As a robust check on this unexpected finding for the BAL_blazar candidates, we report here the INOV study of a new and much more rigorously defined comparison sample consisting of 9 normal (non-BAL) blazars, matched in both magnitude and redshift to the aforementioned sample of BAL_blazar candidates. The present campaign spanning 27 sessions yields an INOV duty cycle of ~23% for the comparison sample of normal blazars, employing the enhanced F-test. However, even this more sensitive test does not detect INOV for the sample of BAL_blazar candidates. This stark INOV contrast found here between the BAL_blazar candidates and normal blazars can probably be traced to a physical interaction of the relativistic jet with the thermal wind, within sub-parsec range from the nucleus. The consequent enfeebling of the jet would additionally explain the striking deficiency among BAL quasars of powerful FR II radio lobes on the much larger scale of 10-100 kpc.
We report the first systematic search for blazars among broad-absorption-line (BAL) quasars. This is based on our intranight optical monitoring of a well-defined sample of 10 candidates selected on the criteria of a flat spectrum and an abnormally hi
We consider whether Broad Absorption Line Quasars (BAL QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt & Gallagher (2000) and Boroson (2002). For this purpose we constructed a sample of 11 BAL QSOs from existing C
We present a new set of 84 Broad absorption line (BAL) quasars ( 1.7 $<$ zem $<$ 4.4) exhibiting an appearance of civ BAL troughs over 0.3$-$4.8 rest-frame years by comparing the Sloan Digital Sky Survey Data Release (SDSSDR)-7, SDSSDR-12, and SDSSDR
Approximately 20% of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disk w
We conducted radio detection observations at 8.4 GHz for 22 radio-loud broad absorption line (BAL) quasars, selected from the Sloan Digital Sky Survey (SDSS) Third Data Release, by a very-long-baseline interferometry (VLBI) technique. The VLBI instru