ترغب بنشر مسار تعليمي؟ اضغط هنا

Long Phonon Mean Free Paths Observed in Cross-plane Thermal-Conductivity Measurements of Exfoliated Hexagonal Boron Nitride

126   0   0.0 ( 0 )
 نشر من قبل Gabriel Jaffe
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sub-micron-thick layers of hexagonal boron nitride (hBN) exhibit high in-plane thermal conductivity and useful optical properties, and serve as dielectric encapsulation layers with low electrostatic inhomogeneity for graphene devices. Despite the promising applications of hBN as a heat spreader, the cross-plane phonon mean free paths in hBN have not been measured. We measure the cross-plane thermal conductivity of hBN flakes exfoliated from bulk crystals. We find that the thermal conductivity is extremely sensitive to film thickness. We measure a forty-fold increase in the cross-plane thermal conductivity between 7 nm and 585 nm flakes at 285 {deg}K. We attribute the large increase in thermal conductivity with increasing thickness to contributions from phonons with long mean free paths (MFPs), spanning many hundreds of nanometers in the thickest flakes. When planar twist interfaces are introduced into the crystal by mechanically stacking multiple thin flakes, the cross-plane thermal conductivity of the stack is found to be a factor of seven below that of individual flakes with similar total thickness, thus providing strong evidence that phonon scattering at twist boundaries limits the maximum phonon MFPs. These results improve our understanding of thermal transport in two-dimensional materials and have important implications for hBN integration in nanoelectronics.



قيم البحث

اقرأ أيضاً

Two-dimensional materials are characterised by a number of unique physical properties which can potentially make them useful to a wide diversity of applications. In particular, the large thermal conductivity of graphene and hexagonal boron nitride ha s already been acknowledged and these materials have been suggested as novel core materials for thermal management in electronics. However, it was not clear if mass produced flakes of hexagonal boron nitride would allow one to achieve an industrially-relevant value of thermal conductivity. Here we demonstrate that laminates of hexagonal boron nitride exhibit thermal conductivity of up to 20 W/mK, which is significantly larger than that currently used in thermal management. We also show that the thermal conductivity of laminates increases with the increasing volumetric mass density, which creates a way of fine-tuning its thermal properties.
The thermal conductivity of suspended few-layer hexagonal boron nitride (h-BN) was measured using a micro-bridge device with built-in resistance thermometers. Based on the measured thermal resistance values of 11-12 atomic layer h-BN samples with sus pended length ranging between 3 and 7.5 um, the room-temperature thermal conductivity of a 11-layer sample was found to be about 360 Wm-1K-1, approaching the basal plane value reported for bulk h-BN. The presence of a polymer residue layer on the sample surface was found to decrease the thermal conductivity of a 5-layer h-BN sample to be about 250 Wm-1K-1 at 300 K. Thermal conductivities for both the 5 layer and the 11 layer samples are suppressed at low temperatures, suggesting increasing scattering of low frequency phonons in thin h-BN samples by polymer residue.
Quantum emitters in hexagonal boron nitride (hBN) are promising building blocks for the realization of integrated quantum photonic systems. However, their spectral inhomogeneity currently limits their potential applications. Here, we apply tensile st rain to quantum emitters embedded in few-layer hBN films and realize both red and blue spectral shifts with tuning magnitudes up to 65 meV, a record for any two-dimensional quantum source. We demonstrate reversible tuning of the emission and related photophysical properties. We also observe rotation of the optical dipole in response to strain, suggesting the presence of a second excited state. We derive a theoretical model to describe strain-based tuning in hBN, and the rotation of the optical dipole. Our work demonstrates the immense potential for strain tuning of quantum emitters in layered materials to enable their employment in scalable quantum photonic networks.
176 - Chengru Wang , Jie Guo , Lan Dong 2016
We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer metho d, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm-1K-1(+141 Wm-1K-1/ -24 Wm-1K-1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN.
Quantum emitters in layered materials are promising candidates for applications in nanophotonics. Here we present a technique based on charge transfer to graphene for measuring the charge transition levels ($rm E_t$) of fluorescent defects in a wide bandgap 2D material, and apply it to quantum emitters in hexagonal boron nitride (hBN). Our results will aid in identifying the atomic structures of quantum emitters in hBN, as well as practical applications since $rm E_t$ determines defect charge states and plays a key role in photodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا