ﻻ يوجد ملخص باللغة العربية
The thermal conductivity of suspended few-layer hexagonal boron nitride (h-BN) was measured using a micro-bridge device with built-in resistance thermometers. Based on the measured thermal resistance values of 11-12 atomic layer h-BN samples with suspended length ranging between 3 and 7.5 um, the room-temperature thermal conductivity of a 11-layer sample was found to be about 360 Wm-1K-1, approaching the basal plane value reported for bulk h-BN. The presence of a polymer residue layer on the sample surface was found to decrease the thermal conductivity of a 5-layer h-BN sample to be about 250 Wm-1K-1 at 300 K. Thermal conductivities for both the 5 layer and the 11 layer samples are suppressed at low temperatures, suggesting increasing scattering of low frequency phonons in thin h-BN samples by polymer residue.
We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer metho
Two-dimensional materials are characterised by a number of unique physical properties which can potentially make them useful to a wide diversity of applications. In particular, the large thermal conductivity of graphene and hexagonal boron nitride ha
Sub-micron-thick layers of hexagonal boron nitride (hBN) exhibit high in-plane thermal conductivity and useful optical properties, and serve as dielectric encapsulation layers with low electrostatic inhomogeneity for graphene devices. Despite the pro
Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring the thermal conductivity in nanoscale, especially in two-dimensional mate
Hexagonal boron nitride (hBN) is a layered dielectric material with a wide range of applications in optics and photonics. In this work, we demonstrate a fabrication method for few-layer hBN flakes with areas up to 5000 $rm mu m$. We show that hBN in