ترغب بنشر مسار تعليمي؟ اضغط هنا

Superior thermal conductivity in suspended bilayer hexagonal boron nitride

177   0   0.0 ( 0 )
 نشر من قبل Xiangfan Xu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm-1K-1(+141 Wm-1K-1/ -24 Wm-1K-1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN.



قيم البحث

اقرأ أيضاً

The thermal conductivity of suspended few-layer hexagonal boron nitride (h-BN) was measured using a micro-bridge device with built-in resistance thermometers. Based on the measured thermal resistance values of 11-12 atomic layer h-BN samples with sus pended length ranging between 3 and 7.5 um, the room-temperature thermal conductivity of a 11-layer sample was found to be about 360 Wm-1K-1, approaching the basal plane value reported for bulk h-BN. The presence of a polymer residue layer on the sample surface was found to decrease the thermal conductivity of a 5-layer h-BN sample to be about 250 Wm-1K-1 at 300 K. Thermal conductivities for both the 5 layer and the 11 layer samples are suppressed at low temperatures, suggesting increasing scattering of low frequency phonons in thin h-BN samples by polymer residue.
Two-dimensional materials are characterised by a number of unique physical properties which can potentially make them useful to a wide diversity of applications. In particular, the large thermal conductivity of graphene and hexagonal boron nitride ha s already been acknowledged and these materials have been suggested as novel core materials for thermal management in electronics. However, it was not clear if mass produced flakes of hexagonal boron nitride would allow one to achieve an industrially-relevant value of thermal conductivity. Here we demonstrate that laminates of hexagonal boron nitride exhibit thermal conductivity of up to 20 W/mK, which is significantly larger than that currently used in thermal management. We also show that the thermal conductivity of laminates increases with the increasing volumetric mass density, which creates a way of fine-tuning its thermal properties.
Hexagonal boron nitride (h-BN) is a tantalizing material for solid-state quantum engineering. Analogously to three-dimensional wide-bandgap semiconductors like diamond, h-BN hosts isolated defects exhibiting visible fluorescence, and the ability to p osition such quantum emitters within a two-dimensional material promises breakthrough advances in quantum sensing, photonics, and other quantum technologies. Critical to such applications, however, is an understanding of the physics underlying h-BNs quantum emission. We report the creation and characterization of visible single-photon sources in suspended, single-crystal, h-BN films. The emitters are bright and stable over timescales of several months in ambient conditions. With substrate interactions eliminated, we study the spectral, temporal, and spatial characteristics of the defects optical emission, which offer several clues about their electronic and chemical structure. Analysis of the defects spectra reveals similarities in vibronic coupling despite widely-varying fluorescence wavelengths, and a statistical analysis of their polarized emission patterns indicates a correlation between the optical dipole orientations of some defects and the primitive crystallographic axes of the single-crystal h-BN film. These measurements constrain possible defect models, and, moreover, suggest that several classes of emitters can exist simultaneously in free-standing h-BN, whether they be different defects, different charge states of the same defect, or the result of strong local perturbations.
Moire superlattices (MSL) formed in angle-aligned bilayers of van der Waals materials have become a promising platform to realize novel two-dimensional electronic states. Angle-aligned trilayer structures can form two sets of MSLs which could potenti ally interfere with each other. In this work, we directly image the moire patterns in both monolayer graphene aligned on hBN and twisted bilayer graphene aligned on hBN, using combined scanning microwave impedance microscopy and conductive atomic force microscopy. Correlation of the two techniques reveals the contrast mechanism for the achieved ultrahigh spatial resolution (<2 nm). We observe two sets of MSLs with different periodicities in the trilayer stack. The smaller MSL breaks the 6-fold rotational symmetry and exhibits abrupt discontinuities at the boundaries of the larger MSL. Using a rigid atomic-stacking model, we demonstrate that the hBN layer considerably modifies the MSL of twisted bilayer graphene. We further analyze its effect on the reciprocal space spectrum of the dual-moire system.
83 - Xianqing Lin , Kelu Su , Jun Ni 2020
We study the stability and electronic structure of magic-angle twisted bilayer graphene on the hexagonal boron nitride (TBG/BN). Full relaxation has been performed for commensurate supercells of the heterostructures with different twist angles ($thet a$) and stackings between TBG and BN. We find that the slightly misaligned configuration with $theta = 0.54^circ$ and the AA/AA stacking has the globally lowest total energy due to the constructive interference of the moir{e} interlayer potentials and thus the greatly enhanced relaxation in its $1 times 1$ commensurate supercell. Gaps are opened at the Fermi level ($E_F$) for small supercells with the stackings that enable strong breaking of the $C_2$ symmetry in the atomic structure of TBG. For large supercells with $theta$ close to those of the $1 times 1$ supercells, the broadened flat bands can still be resolved from the spectral functions. The $theta = 0.54^circ$ is also identified as a critical angle for the evolution of the electronic structure with $theta$, at which the energy range of the mini-bands around $E_F$ begins to become narrower with increasing $theta$ and their gaps from the dispersive bands become wider. The discovered stablest TBG/BN with a finite $theta$ of about $0.54^circ$ and its gapped flat bands agree with recent experimental observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا