ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Network Topology Inference via Structured Fusion Regularization

59   0   0.0 ( 0 )
 نشر من قبل Yanli Yuan
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Joint network topology inference represents a canonical problem of jointly learning multiple graph Laplacian matrices from heterogeneous graph signals. In such a problem, a widely employed assumption is that of a simple common component shared among multiple networks. However, in practice, a more intricate topological pattern, comprising simultaneously of sparse, homogeneity and heterogeneity components, would exhibit in multiple networks. In this paper, we propose a general graph estimator based on a novel structured fusion regularization that enables us to jointly learn multiple graph Laplacian matrices with such complex topological patterns, and enjoys both high computational efficiency and rigorous theoretical guarantee. Moreover, in the proposed regularization term, the topological pattern among networks is characterized by a Gram matrix, endowing our graph estimator with the ability of flexible modelling different types of topological patterns by different choices of the Gram matrix. Computationally, the regularization term, coupling the parameters together, makes the formulated optimization problem intractable and thus, we develop a computationally-scalable algorithm based on the alternating direction method of multipliers (ADMM) to solve it efficiently. Theoretically, we provide a theoretical analysis of the proposed graph estimator, which establishes a non-asymptotic bound of the estimation error under the high-dimensional setting and reflects the effect of several key factors on the convergence rate of our algorithm. Finally, the superior performance of the proposed method is illustrated through simulated and real data examples.



قيم البحث

اقرأ أيضاً

In this paper, we propose a way to combine two acceleration techniques for the $ell_{1}$-regularized least squares problem: safe screening tests, which allow to eliminate useless dictionary atoms; and the use of fast structured approximations of the dictionary matrix. To do so, we introduce a new family of screening tests, termed stable screening, which can cope with approximation errors on the dictionary atoms while keeping the safety of the test (i.e. zero risk of rejecting atoms belonging to the solution support). Some of the main existing screening tests are extended to this new framework. The proposed algorithm consists in using a coarser (but faster) approximation of the dictionary at the initial iterations and then switching to better approximations until eventually adopting the original dictionary. A systematic switching criterion based on the duality gap saturation and the screening ratio is derived.Simulation results show significant reductions in both computational complexity and execution times for a wide range of tested scenarios.
54 - Qi Lyu , Xiao Fu 2021
This work focuses on the problem of unraveling nonlinearly mixed latent components in an unsupervised manner. The latent components are assumed to reside in the probability simplex, and are transformed by an unknown post-nonlinear mixing system. This problem finds various applications in signal and data analytics, e.g., nonlinear hyperspectral unmixing, image embedding, and nonlinear clustering. Linear mixture learning problems are already ill-posed, as identifiability of the target latent components is hard to establish in general. With unknown nonlinearity involved, the problem is even more challenging. Prior work offered a function equation-based formulation for provable latent component identification. However, the identifiability conditions are somewhat stringent and unrealistic. In addition, the identifiability analysis is based on the infinite sample (i.e., population) case, while the understanding for practical finite sample cases has been elusive. Moreover, the algorithm in the prior work trades model expressiveness with computational convenience, which often hinders the learning performance. Our contribution is threefold. First, new identifiability conditions are derived under largely relaxed assumptions. Second, comprehensive sample complexity results are presented -- which are the first of the kind. Third, a constrained autoencoder-based algorithmic framework is proposed for implementation, which effectively circumvents the challenges in the existing algorithm. Synthetic and real experiments corroborate our theoretical analyses.
We discuss structured Schatten norms for tensor decomposition that includes two recently proposed norms (overlapped and latent) for convex-optimization-based tensor decomposition, and connect tensor decomposition with wider literature on structured s parsity. Based on the properties of the structured Schatten norms, we mathematically analyze the performance of latent approach for tensor decomposition, which was empirically found to perform better than the overlapped approach in some settings. We show theoretically that this is indeed the case. In particular, when the unknown true tensor is low-rank in a specific mode, this approach performs as good as knowing the mode with the smallest rank. Along the way, we show a novel duality result for structures Schatten norms, establish the consistency, and discuss the identifiability of this approach. We confirm through numerical simulations that our theoretical prediction can precisely predict the scaling behavior of the mean squared error.
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance loss. Despite its effectiveness, existing regularization-based parameter pruning methods usually drive weights towards zero with large and constant regularization factors, which neglects the fact that the expressiveness of CNNs is fragile and needs a more gentle way of regularization for the networks to adapt during pruning. To solve this problem, we propose a new regularization-based pruning method (named IncReg) to incrementally assign different regularization factors to different weight groups based on their relative importance, whose effectiveness is proved on popular CNNs compared with state-of-the-art methods.
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance degrade. Despite its effectiveness, existing regularization-based parameter pruning methods usually dr ive weights towards zero with large and constant regularization factors, which neglects the fragility of the expressiveness of CNNs, and thus calls for a more gentle regularization scheme so that the networks can adapt during pruning. To achieve this, we propose a new and novel regularization-based pruning method, named IncReg, to incrementally assign different regularization factors to different weights based on their relative importance. Empirical analysis on CIFAR-10 dataset verifies the merits of IncReg. Further extensive experiments with popular CNNs on CIFAR-10 and ImageNet datasets show that IncReg achieves comparable to even better results compared with state-of-the-arts. Our source codes and trained models are available here: https://github.com/mingsun-tse/caffe_increg.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا