ﻻ يوجد ملخص باللغة العربية
This work focuses on the problem of unraveling nonlinearly mixed latent components in an unsupervised manner. The latent components are assumed to reside in the probability simplex, and are transformed by an unknown post-nonlinear mixing system. This problem finds various applications in signal and data analytics, e.g., nonlinear hyperspectral unmixing, image embedding, and nonlinear clustering. Linear mixture learning problems are already ill-posed, as identifiability of the target latent components is hard to establish in general. With unknown nonlinearity involved, the problem is even more challenging. Prior work offered a function equation-based formulation for provable latent component identification. However, the identifiability conditions are somewhat stringent and unrealistic. In addition, the identifiability analysis is based on the infinite sample (i.e., population) case, while the understanding for practical finite sample cases has been elusive. Moreover, the algorithm in the prior work trades model expressiveness with computational convenience, which often hinders the learning performance. Our contribution is threefold. First, new identifiability conditions are derived under largely relaxed assumptions. Second, comprehensive sample complexity results are presented -- which are the first of the kind. Third, a constrained autoencoder-based algorithmic framework is proposed for implementation, which effectively circumvents the challenges in the existing algorithm. Synthetic and real experiments corroborate our theoretical analyses.
We propose a novel and principled method to learn a nonparametric graph model called graphon, which is defined in an infinite-dimensional space and represents arbitrary-size graphs. Based on the weak regularity lemma from the theory of graphons, we l
Variation Autoencoder (VAE) has become a powerful tool in modeling the non-linear generative process of data from a low-dimensional latent space. Recently, several studies have proposed to use VAE for unsupervised clustering by using mixture models t
Inspired by complexity and diversity of biological neurons, our group proposed quadratic neurons by replacing the inner product in current artificial neurons with a quadratic operation on input data, thereby enhancing the capability of an individual
Although graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice, their theoretical guarantee on generalizability remains elusive in the literature. In this paper, we provide a theoretically-g
Background: Despite recent significant progress in the development of automatic sleep staging methods, building a good model still remains a big challenge for sleep studies with a small cohort due to the data-variability and data-inefficiency issues.