ﻻ يوجد ملخص باللغة العربية
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance loss. Despite its effectiveness, existing regularization-based parameter pruning methods usually drive weights towards zero with large and constant regularization factors, which neglects the fact that the expressiveness of CNNs is fragile and needs a more gentle way of regularization for the networks to adapt during pruning. To solve this problem, we propose a new regularization-based pruning method (named IncReg) to incrementally assign different regularization factors to different weight groups based on their relative importance, whose effectiveness is proved on popular CNNs compared with state-of-the-art methods.
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance degrade. Despite its effectiveness, existing regularization-based parameter pruning methods usually dr
Network pruning is widely used to compress Deep Neural Networks (DNNs). The Soft Filter Pruning (SFP) method zeroizes the pruned filters during training while updating them in the next training epoch. Thus the trained information of the pruned filter
Regularization has long been utilized to learn sparsity in deep neural network pruning. However, its role is mainly explored in the small penalty strength regime. In this work, we extend its application to a new scenario where the regularization grow
Budgeted pruning is the problem of pruning under resource constraints. In budgeted pruning, how to distribute the resources across layers (i.e., sparsity allocation) is the key problem. Traditional methods solve it by discretely searching for the lay
Network pruning in Convolutional Neural Networks (CNNs) has been extensively investigated in recent years. To determine the impact of pruning a group of filters on a networks accuracy, state-of-the-art pruning methods consistently assume filters of a