ترغب بنشر مسار تعليمي؟ اضغط هنا

Routing algorithms as tools for integrating social distancing with emergency evacuation

303   0   0.0 ( 0 )
 نشر من قبل Yi-Lin Tsai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the implications of integrating social distancing with emergency evacuation, as would be expected when a hurricane approaches a city during the COVID-19 pandemic. Specifically, we compare DNN (Deep Neural Network)-based and non-DNN methods for generating evacuation strategies that minimize evacuation time while allowing for social distancing in emergency vehicles. A central question is whether a DNN-based method provides sufficient extra routing efficiency to accommodate increased social distancing in a time-constrained evacuation operation. We describe the problem as a Capacitated Vehicle Routing Problem and solve it using a non-DNN solution (Sweep Algorithm) and a DNN-based solution (Deep Reinforcement Learning). The DNN-based solution can provide decision-makers with more efficient routing than the typical non-DNN routing solution. However, it does not come close to compensating for the extra time required for social distancing, and its advantage disappears as the emergency vehicle capacity approaches the number of people per household.



قيم البحث

اقرأ أيضاً

Traffic evacuation plays a critical role in saving lives in devastating disasters such as hurricanes, wildfires, floods, earthquakes, etc. An ability to evaluate evacuation plans in advance for these rare events, including identifying traffic flow bo ttlenecks, improving traffic management policies, and understanding the robustness of the traffic management policy are critical for emergency management. Given the rareness of such events and the corresponding lack of real data, traffic simulation provides a flexible and versatile approach for such scenarios, and furthermore allows dynamic interaction with the simulated evacuation. In this paper, we build a traffic simulation pipeline to explore the above problems, covering many aspects of evacuation, including map creation, demand generation, vehicle behavior, bottleneck identification, traffic management policy improvement, and results analysis. We apply the pipeline to two case studies in California. The first is Paradise, which was destroyed by a large wildfire in 2018 and experienced catastrophic traffic jams during the evacuation. The second is Mill Valley, which has high risk of wildfire and potential traffic issues since the city is situated in a narrow valley.
Machine learning (ML) is increasingly being used in image retrieval systems for medical decision making. One application of ML is to retrieve visually similar medical images from past patients (e.g. tissue from biopsies) to reference when making a me dical decision with a new patient. However, no algorithm can perfectly capture an experts ideal notion of similarity for every case: an image that is algorithmically determined to be similar may not be medically relevant to a doctors specific diagnostic needs. In this paper, we identified the needs of pathologists when searching for similar images retrieved using a deep learning algorithm, and developed tools that empower users to cope with the search algorithm on-the-fly, communicating what types of similarity are most important at different moments in time. In two evaluations with pathologists, we found that these refinement tools increased the diagnostic utility of images found and increased user trust in the algorithm. The tools were preferred over a traditional interface, without a loss in diagnostic accuracy. We also observed that users adopted new strategies when using refinement tools, re-purposing them to test and understand the underlying algorithm and to disambiguate ML errors from their own errors. Taken together, these findings inform future human-ML collaborative systems for expert decision-making.
The Ubiquitous nature of smartphones has significantly increased the use of social media platforms, such as Facebook, Twitter, TikTok, and LinkedIn, etc., among the public, government, and businesses. Facebook generated ~70 billion USD in 2019 in adv ertisement revenues alone, a ~27% increase from the previous year. Social media has also played a strong role in outbreaks of social protests responsible for political changes in different countries. As we can see from the above examples, social media plays a big role in business intelligence and international politics. In this paper, we present and discuss a high-level functional intelligence model (recipe) of Social Media Analysis (SMA). This model synthesizes the input data and uses operational intelligence to provide actionable recommendations. In addition, it also matches the synthesized function of the experiences and learning gained from the environment. The SMA model presented is independent of the application domain, and can be applied to different domains, such as Education, Healthcare and Government, etc. Finally, we also present some of the challenges faced by SMA and how the SMA model presented in this paper solves them.
Global demand for donated blood far exceeds supply, and unmet need is greatest in low- and middle-income countries; experts suggest that large-scale coordination is necessary to alleviate demand. Using the Facebook Blood Donation tool, we conduct the first large-scale algorithmic matching of blood donors with donation opportunities. While measuring actual donation rates remains a challenge, we measure donor action (e.g., making a donation appointment) as a proxy for actual donation. We develop automated policies for matching donors with donation opportunities, based on an online matching model. We provide theoretical guarantees for these policies, both regarding the number of expected donations and the equitable treatment of blood recipients. In simulations, a simple matching strategy increases the number of donations by 5-10%; a pilot experiment with real donors shows a 5% relative increase in donor action rate (from 3.7% to 3.9%). When scaled to the global Blood Donation tool user base, this corresponds to an increase of around one hundred thousand users taking action toward donation. Further, observing donor action on a social network can shed light onto donor behavior and response to incentives. Our initial findings align with several observations made in the medical and social science literature regarding donor behavior.
This paper presents a design of a non-player character (AI) for promoting balancedness in use of body segments when engaging in full-body motion gaming. In our experiment, we settle a battle between the proposed AI and a player by using FightingICE, a fighting game platform for AI development. A middleware called UKI is used to allow the player to control the game by using body motion instead of the keyboard and mouse. During gameplay, the proposed AI analyze health states of the player; it determines its next action by predicting how each candidate action, recommended by a Monte-Carlo tree search algorithm, will induce the player to move, and how the players health tends to be affected. Our result demonstrates successful improvement in balancedness in use of body segments on 4 out of 5 subjects.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا