ترغب بنشر مسار تعليمي؟ اضغط هنا

Human-Centered Tools for Coping with Imperfect Algorithms during Medical Decision-Making

93   0   0.0 ( 0 )
 نشر من قبل Carrie Cai
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning (ML) is increasingly being used in image retrieval systems for medical decision making. One application of ML is to retrieve visually similar medical images from past patients (e.g. tissue from biopsies) to reference when making a medical decision with a new patient. However, no algorithm can perfectly capture an experts ideal notion of similarity for every case: an image that is algorithmically determined to be similar may not be medically relevant to a doctors specific diagnostic needs. In this paper, we identified the needs of pathologists when searching for similar images retrieved using a deep learning algorithm, and developed tools that empower users to cope with the search algorithm on-the-fly, communicating what types of similarity are most important at different moments in time. In two evaluations with pathologists, we found that these refinement tools increased the diagnostic utility of images found and increased user trust in the algorithm. The tools were preferred over a traditional interface, without a loss in diagnostic accuracy. We also observed that users adopted new strategies when using refinement tools, re-purposing them to test and understand the underlying algorithm and to disambiguate ML errors from their own errors. Taken together, these findings inform future human-ML collaborative systems for expert decision-making.



قيم البحث

اقرأ أيضاً

Algorithms engineered to leverage rich behavioral and biometric data to predict individual attributes and actions continue to permeate public and private life. A fundamental risk may emerge from misconceptions about the sensitivity of such data, as w ell as the agency of individuals to protect their privacy when fine-grained (and possibly involuntary) behavior is tracked. In this work, we examine how individuals adjust their behavior when incentivized to avoid the algorithmic prediction of their intent. We present results from a virtual reality task in which gaze, movement, and other physiological signals are tracked. Participants are asked to decide which card to select without an algorithmic adversary anticipating their choice. We find that while participants use a variety of strategies, data collected remains highly predictive of choice (80% accuracy). Additionally, a significant portion of participants became more predictable despite efforts to obfuscate, possibly indicating mistaken priors about the dynamics of algorithmic prediction.
Building models from data is an integral part of the majority of data science workflows. While data scientists are often forced to spend the majority of the time available for a given project on data cleaning and exploratory analysis, the time availa ble to practitioners to build actual models from data is often rather short due to time constraints for a given project. AutoML systems are currently rising in popularity, as they can build powerful models without human oversight. In this position paper, we aim to discuss the impact of the rising popularity of such systems and how a user-centered interface for such systems could look like. More importantly, we also want to point out features that are currently missing in those systems and start to explore better usability of such systems from a data-scientists perspective.
Across a growing number of domains, human experts are expected to learn from and adapt to AI with superior decision making abilities. But how can we quantify such human adaptation to AI? We develop a simple measure of human adaptation to AI and test its usefulness in two case studies. In Study 1, we analyze 1.3 million move decisions made by professional Go players and find that a positive form of adaptation to AI (learning) occurred after the players could observe the reasoning processes of AI, rather than mere actions of AI. These findings based on our measure highlight the importance of explainability for human learning from AI. In Study 2, we test whether our measure is sufficiently sensitive to capture a negative form of adaptation to AI (cheating aided by AI), which occurred in a match between professional Go players. We discuss our measures applications in domains other than Go, especially in domains in which AIs decision making ability will likely surpass that of human experts.
The widespread use of deep neural networks has achieved substantial success in many tasks. However, there still exists a huge gap between the operating mechanism of deep learning models and human-understandable decision making, so that humans cannot fully trust the predictions made by these models. To date, little work has been done on how to align the behaviors of deep learning models with human perception in order to train a human-understandable model. To fill this gap, we propose a new framework to train a deep neural network by incorporating the prior of human perception into the model learning process. Our proposed model mimics the process of perceiving conceptual parts from images and assessing their relative contributions towards the final recognition. The effectiveness of our proposed model is evaluated on two classical visual recognition tasks. The experimental results and analysis confirm our model is able to provide interpretable explanations for its predictions, but also maintain competitive recognition accuracy.
Using the concept of principal stratification from the causal inference literature, we introduce a new notion of fairness, called principal fairness, for human and algorithmic decision-making. The key idea is that one should not discriminate among in dividuals who would be similarly affected by the decision. Unlike the existing statistical definitions of fairness, principal fairness explicitly accounts for the fact that individuals can be impacted by the decision. We propose an axiomatic assumption that all groups are created equal. This assumption is motivated by a belief that protected attributes such as race and gender should have no direct causal effects on potential outcomes. Under this assumption, we show that principal fairness implies all three existing statistical fairness criteria once we account for relevant covariates. This result also highlights the essential role of conditioning covariates in resolving the previously recognized tradeoffs between the existing statistical fairness criteria. Finally, we discuss how to empirically choose conditioning covariates and then evaluate the principal fairness of a particular decision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا