ﻻ يوجد ملخص باللغة العربية
We consider a system of charged one-dimensional spin-$frac{1}{2}$ fermions at low temperature. We study how the energy of a highly-excited quasiparticle (or hole) relaxes toward the chemical potential in the regime of weak interactions. The dominant relaxation processes involve collisions with two other fermions. We find a dramatic enhancement of the relaxation rate at low energies, with the rate scaling as the inverse sixth power of the excitation energy. This behavior is caused by the long-range nature of the Coulomb interaction.
The electron self-energy for long-range Coulomb interactions plays a crucial role in understanding the many-body physics of interacting electron systems (e.g. in metals and semiconductors), and has been studied extensively for decades. In fact, it is
Magnetic systems composed of weakly coupled spin-1/2 chains are fertile ground for hosting the fractional magnetic excitations that are intrinsic to interacting fermions in one-dimension (1D). However, the exotic physics arising from the quantum many
We study how a system of one-dimensional spin-1/2 fermions at temperatures well below the Fermi energy approaches thermal equilibrium. The interactions between fermions are assumed to be weak and are accounted for within the perturbation theory. In t
Using quantum Monte Carlo simulations, we show that density-density and pairing correlation functions of the one-dimensional attractive fermionic Hubbard model in a harmonic confinement potential are characterized by the anomalous dimension $K_rho$ o
It is well-known that, generically, the one-dimensional interacting fermions cannot be described in terms of the Fermi liquid. Instead, they present different phenomenology, that of the Tomonaga-Luttinger liquid: the Landau quasiparticles are ill-def