ﻻ يوجد ملخص باللغة العربية
The electron self-energy for long-range Coulomb interactions plays a crucial role in understanding the many-body physics of interacting electron systems (e.g. in metals and semiconductors), and has been studied extensively for decades. In fact, it is among the oldest and the most-investigated many body problems in physics. However, there is a lack of an analytical expression for the self-energy $Re Sigma^{(R)}( varepsilon,T)$ when energy $varepsilon$ and temperature $k_{B} T$ are arbitrary with respect to each other (while both being still small compared with the Fermi energy). We revisit this problem and calculate analytically the self-energy on the mass shell for a two-dimensional electron system with Coulomb interactions in the high density limit $r_s ll 1$, for temperature $ r_s^{3/2} ll k_{B} T/ E_F ll r_s$ and energy $r_s^{3/2} ll |varepsilon |/E_F ll r_s$. We provide the exact high-density analytical expressions for the real and imaginary parts of the electron self-energy with arbitrary value of $varepsilon /k_{B} T$, to the leading order in the dimensionless Coulomb coupling constant $r_s$, and to several higher than leading orders in $k_{B} T/r_s E_F$ and $varepsilon /r_s E_F$. We also obtain the asymptotic behavior of the self-energy in the regimes $|varepsilon | ll k_{B} T$ and $|varepsilon | gg k_{B} T$. The higher-order terms have subtle and highly non-trivial compound logarithmic contributions from both $varepsilon $ and $T$, explaining why they have never before been calculated in spite of the importance of the subject matter.
We study the critical breakdown of two-dimensional quantum magnets in the presence of algebraically decaying long-range interactions by investigating the transverse-field Ising model on the square and triangular lattice. This is achieved technically
The theoretical model of the short-range interacting Luttinger liquid predicts a power-law scaling of the density of states and the momentum distribution function around the Fermi surface, which can be readily tested through tunneling experiments. Ho
We consider a system of charged one-dimensional spin-$frac{1}{2}$ fermions at low temperature. We study how the energy of a highly-excited quasiparticle (or hole) relaxes toward the chemical potential in the regime of weak interactions. The dominant
We perform projective quantum Monte Carlo simulations of zigzag graphene nanoribbons within a realistic model with long-range Coulomb interactions. Increasing the relative strength of nonlocal interactions with respect to the on-site repulsion does n
MnBi2Te4(MBT) is a promising van der Waals layered antiferromagnetic (AF) topological insulator that combines a topologically non-trivial inverted Bi-Te band gap with ferromagnetic (FM) layers of Mn ions. We perform inelastic neutron scattering (INS)