ﻻ يوجد ملخص باللغة العربية
Magnetic systems composed of weakly coupled spin-1/2 chains are fertile ground for hosting the fractional magnetic excitations that are intrinsic to interacting fermions in one-dimension (1D). However, the exotic physics arising from the quantum many-body interactions beyond 1D are poorly understood in materials of this class. Spinons and psinons are two mutually exclusive low-energy magnetic quasiparticles; the excitation seen depends on the ground state of the spin chain. Here, we present inelastic neutron scattering and neutron diffraction evidence for their coexistence in SrCo$_{2}$V$_{2}$O$_{8}$ at milli-Kelvin temperatures in part of the Neel phase (2.4 T $leq$ $mu_mathrm{{0}}$H $<$ 3.9 T) and possibly also the field-induced spin density wave phase up to the highest field probed ($mu_mathrm{{0}}$H $geq$ 3.9 T, $mu_mathrm{{0}}$H$_mathbf{mathrm{{max}}}$ = 5.5 T). These results unveil a novel spatial phase inhomogeneity for the weakly coupled spin chains in this compound. This quantum dynamical phase separation is a new phenomenon in quasi-1D quantum magnets, highlighting the non-trivial consequences of inter-chain coupling.
Confinement is a process by which particles with fractional quantum numbers bind together to form quasiparticles with integer quantum numbers. The constituent particles are confined by an attractive interaction whose strength increases with increasin
When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to descr
The past decade has witnessed the burgeoning discovery of a variety of topological states of matter with distinct nontrivial band topologies. Thus far, most of materials studied possess two-dimensional or three-dimensional electronic structures, with
We use Density Matrix Renormalization Group to study a one-dimensional chain with Peierls electron-phonon coupling describing the modulation of the electron hopping due to lattice distortion. We demonstrate the appearance of an exotic phase-separated
The Shastry-Sutherland model, which consists of a set of spin 1/2 dimers on a 2-dimensional square lattice, is simple and soluble, but captures a central theme of condensed matter physics by sitting precariously on the quantum edge between isolated,