ﻻ يوجد ملخص باللغة العربية
We derive novel results on the ergodic theory of irreducible, aperiodic Markov chains. We show how to optimally steer the network flow to a stationary distribution over a finite or infinite time horizon. Optimality is with respect to an entropic distance between distributions on feasible paths. When the prior is reversible, it shown that solutions to this discrete time and space steering problem are reversible as well. A notion of temperature is defined for Boltzmann distributions on networks, and problems analogous to cooling (in this case, for evolutions in discrete space and time) are discussed.
A logical function can be used to characterizing a property of a state of Boolean network (BN), which is considered as an aggregation of states. To illustrate the dynamics of a set of logical functions, which characterize our concerned properties of
This paper presents an iterative algorithm to compute a Robust Control Invariant (RCI) set, along with an invariance-inducing control law, for Linear Parameter-Varying (LPV) systems. As the real-time measurements of the scheduling parameters are typi
This paper investigates an optimal consensus problem for a group of uncertain linear multi-agent systems. All agents are allowed to possess parametric uncertainties that range over an arbitrarily large compact set. The goal is to collectively minimiz
A structured preconditioned conjugate gradient (PCG) solver is developed for the Newton steps in second-order methods for a class of constrained network optimal control problems. Of specific interest are problems with discrete-time dynamics arising f
Consider a set of single-input, single-output nonlinear systems whose input-output maps are described only in terms of convergent Chen-Fliess series without any assumption that finite dimensional state space models are available. It is shown that any