ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariant Subspace Approach to Boolean (Control) Networks

86   0   0.0 ( 0 )
 نشر من قبل Daizhan Cheng Dr
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

A logical function can be used to characterizing a property of a state of Boolean network (BN), which is considered as an aggregation of states. To illustrate the dynamics of a set of logical functions, which characterize our concerned properties of a BN, the invariant subspace containing the set of logical functions is proposed, and its properties are investigated. Then the invariant subspace of Boolean control network (BCN) is also proposed. The dynamics of invariant subspace of BCN is also invariant. Finally, using outputs as the set of logical functions, the minimum realization of BCN is proposed, which provides a possible solution to overcome the computational complexity of large scale BNs/BCNs.



قيم البحث

اقرأ أيضاً

A new analytical framework consisting of two phenomena: single sample and multiple samples, is proposed to deal with the identification problem of Boolean control networks (BCNs) systematically and comprehensively. Under this framework, the existing works on identification can be categorized as special cases of these two phenomena. Several effective criteria for determining the identifiability and the corresponding identification algorithms are proposed. Three important results are derived: (1) If a BN is observable, it is uniquely identifiable; (2) If a BCN is O1-observable, it is uniquely identifiable, where O1-observability is the most general form of the existing observability terms; (3) A BN or BCN may be identifiable, but not observable. In addition, remarks present some challenging future research and contain a preliminary attempt about how to identify unobservable systems.
It has been shown that self-triggered control has the ability to reduce computational loads and deal with the cases with constrained resources by properly setting up the rules for updating the system control when necessary. In this paper, self-trigge red stabilization of Boolean control networks (BCNs), including deterministic BCNs, probabilistic BCNs and Markovian switching BCNs, is first investigated via semi-tensor product of matrices and Lyapunov theory of Boolean networks. The self-triggered mechanism with the aim to determine when the controller should be updated is given based on the decrease of the corresponding Lyapunov functions between two successive sampling times. We show that the self-triggered controllers can be chosen as the conventional controllers without sampling, and also can be optimally constructed based on the triggering conditions.
We derive novel results on the ergodic theory of irreducible, aperiodic Markov chains. We show how to optimally steer the network flow to a stationary distribution over a finite or infinite time horizon. Optimality is with respect to an entropic dist ance between distributions on feasible paths. When the prior is reversible, it shown that solutions to this discrete time and space steering problem are reversible as well. A notion of temperature is defined for Boltzmann distributions on networks, and problems analogous to cooling (in this case, for evolutions in discrete space and time) are discussed.
This paper deals with the computation of the largest robust control invariant sets (RCISs) of constrained nonlinear systems. The proposed approach is based on casting the search for the invariant set as a graph theoretical problem. Specifically, a ge neral class of discrete-time time-invariant nonlinear systems is considered. First, the dynamics of a nonlinear system is approximated with a directed graph. Subsequently, the condition for robust control invariance is derived and an algorithm for computing the robust control invariant set is presented. The algorithm combines the iterative subdivision technique with the robust control invariance condition to produce outer approximations of the largest robust control invariant set at each iteration. Following this, we prove convergence of the algorithm to the largest RCIS as the iterations proceed to infinity. Based on the developed algorithms, an algorithm to compute inner approximations of the RCIS is also presented. A special case of input affine and disturbance affine systems is also considered. Finally, two numerical examples are presented to demonstrate the efficacy of the proposed method.
This paper presents a compositional framework for the construction of symbolic models for a network composed of a countably infinite number of finite-dimensional discrete-time control subsystems. We refer to such a network as infinite network. The pr oposed approach is based on the notion of alternating simulation functions. This notion relates a concrete network to its symbolic model with guaranteed mismatch bounds between their output behaviors. We propose a compositional approach to construct a symbolic model for an infinite network, together with an alternating simulation function, by composing symbolic models and alternating simulation functions constructed for subsystems. Assuming that each subsystem is incrementally input-to-state stable and under some small-gain type conditions, we present an algorithm for orderly constructing local symbolic models with properly designed quantization parameters. In this way, the proposed compositional approach can provide us a guideline for constructing an overall symbolic model with any desired approximation accuracy. A compositional controller synthesis scheme is also provided to enforce safety properties on the infinite network in a decentralized fashion. The effectiveness of our result is illustrated through a road traffic network consisting of infinitely many road cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا