ترغب بنشر مسار تعليمي؟ اضغط هنا

Structured preconditioning of conjugate gradients for path-graph network optimal control problems

179   0   0.0 ( 0 )
 نشر من قبل Armaghan Zafar
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A structured preconditioned conjugate gradient (PCG) solver is developed for the Newton steps in second-order methods for a class of constrained network optimal control problems. Of specific interest are problems with discrete-time dynamics arising from the path-graph interconnection of $N$ heterogeneous sub-systems. The computational complexity of each PGC step is shown to be $O(NT)$, where $T$ is the length of the time horizon. The proposed preconditioning involves a fixed number of block Jacobi iterations per PCG step. A decreasing analytic bound on the effective conditioning is given in terms of this number. The computations are decomposable across the spatial and temporal dimensions of the optimal control problem, into sub-problems of size independent of $N$ and $T$. Numerical results are provided for a mass-spring-damper chain.



قيم البحث

اقرأ أيضاً

The vulnerability of artificial intelligence (AI) and machine learning (ML) against adversarial disturbances and attacks significantly restricts their applicability in safety-critical systems including cyber-physical systems (CPS) equipped with neura l network components at various stages of sensing and control. This paper addresses the reachable set estimation and safety verification problems for dynamical systems embedded with neural network components serving as feedback controllers. The closed-loop system can be abstracted in the form of a continuous-time sampled-data system under the control of a neural network controller. First, a novel reachable set computation method in adaptation to simulations generated out of neural networks is developed. The reachability analysis of a class of feedforward neural networks called multilayer perceptrons (MLP) with general activation functions is performed in the framework of interval arithmetic. Then, in combination with reachability methods developed for various dynamical system classes modeled by ordinary differential equations, a recursive algorithm is developed for over-approximating the reachable set of the closed-loop system. The safety verification for neural network control systems can be performed by examining the emptiness of the intersection between the over-approximation of reachable sets and unsafe sets. The effectiveness of the proposed approach has been validated with evaluations on a robotic arm model and an adaptive cruise control system.
The problem of constrained coverage path planning involves a robot trying to cover maximum area of an environment under some constraints that appear as obstacles in the map. Out of the several coverage path planning methods, we consider augmenting th e linear sweep-based coverage method to achieve minimum energy/ time optimality along with maximum area coverage. In addition, we also study the effects of variation of different parameters on the performance of the modified method.
This paper studies network resilience against structured additive perturbations to its topology. We consider dynamic networks modeled as linear time-invariant systems subject to perturbations of bounded energy satisfying specific sparsity and entry-w ise constraints. Given an energy level, the structured pseudospectral abscissa captures the worst-possible perturbation an adversary could employ to de-stabilize the network, and the structured stability radius is the maximum energy in the structured perturbation that the network can withstand without becoming unstable. Building on a novel characterization of the worst-case structured perturbation, we propose iterative algorithms that efficiently compute the structured pseudospectral abscissa and structured stability radius. We provide theoretical guarantees of the local convergence of the algorithms and illustrate their efficacy and accuracy on several network examples.
In this paper we consider the problem of finding a Nash equilibrium (NE) via zeroth-order feedback information in games with merely monotone pseudogradient mapping. Based on hybrid system theory, we propose a novel extremum seeking algorithm which co nverges to the set of Nash equilibria in a semi-global practical sense. Finally, we present two simulation examples. The first shows that the standard extremum seeking algorithm fails, while ours succeeds in reaching NE. In the second, we simulate an allocation problem with fixed demand.
226 - Hanlei Wang 2021
This paper focuses on the construction of differential-cascaded structures for control of nonlinear robot manipulators subjected to disturbances and unavailability of partial information of the desired trajectory. The proposed differential-cascaded s tructures rely on infinite differential series to handle the robustness with respect to time-varying disturbances and the partial knowledge of the desired trajectories for nonlinear robot manipulators. The long-standing problem of reliable adaptation in the presence of sustaining disturbances is solved by the proposed forwardstepping control with forwardstepping adaptation, and stacked reference dynamics yielding adaptive differential-cascaded structures have been proposed to facilitate the forwardstepping adaptation to both the uncertainty of robot dynamics and that of the frequencies of disturbances. A distinctive point of the proposed differential-cascaded approach is that the reference dynamics for design and analysis involve high-order quantities, but via degree-reduction implementation of the reference dynamics, the control typically involves only the low-order quantities, thus facilitating its applications to control of most physical systems. Our result relies on neither the explicit estimation of the disturbances or derivative and second derivative of the desired position nor the solutions to linear/nonlinear regulator equations, and the employed essential element is a differential-cascaded structure governing robot dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا