ﻻ يوجد ملخص باللغة العربية
Let $k$ be a field. We show that locally presentable, $k$-linear categories $mathcal{C}$ dualizable in the sense that the identity functor can be recovered as $coprod_i x_iotimes f_i$ for objects $x_iin mathcal{C}$ and left adjoints $f_i$ from $mathcal{C}$ to $mathrm{Vect}_k$ are products of copies of $mathrm{Vect}_k$. This partially confirms a conjecture by Brandenburg, the author and T. Johnson-Freyd. Motivated by this, we also characterize the Grothendieck categories containing an object $x$ with the property that every object is a copower of $x$: they are precisely the categories of non-singular injective right modules over simple, regular, right self-injective rings of type I or III.
Categories over a field $k$ can be graded by different groups in a connected way; we consider morphisms between these gradings in order to define the fundamental grading group. We prove that this group is isomorphic to the fundamental group `a la Gro
We define a tensor product of linear sites, and a resulting tensor product of Grothendieck categories based upon their representations as categories of linear sheaves. We show that our tensor product is a special case of the tensor product of locally
We investigate the notion of involutive weak globular $omega$-categories via Jacque Penons approach. In particular, we give the constructions of a free self-dual globular $omega$-magma, of a free strict involutive globular $omega$-category, over an $
In this paper, we study tensor (or monoidal) categories of finite rank over an algebraically closed field $mathbb F$. Given a tensor category $mathcal{C}$, we have two structure invariants of $mathcal{C}$: the Green ring (or the representation ring)
We develop some basic concepts in the theory of higher categories internal to an arbitrary $infty$-topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yonedas lemma for internal categories.