ﻻ يوجد ملخص باللغة العربية
We define a tensor product of linear sites, and a resulting tensor product of Grothendieck categories based upon their representations as categories of linear sheaves. We show that our tensor product is a special case of the tensor product of locally presentable linear categories, and that the tensor product of locally coherent Grothendieck categories is locally coherent if and only if the Deligne tensor product of their abelian categories of finitely presented objects exists. We describe the tensor product of non-commutative projective schemes in terms of Z-algebras, and show that for projective schemes our tensor product corresponds to the usual product scheme.
Given two small dg categories $C,D$, defined over a field, we introduce their (non-symmetric) twisted tensor product $Coverset{sim}{otimes} D$. We show that $-overset{sim}{otimes} D$ is left adjoint to the functor $Coh(D,-)$, where $Coh(D,E)$ is the
It is well-known that the pre-2-category $mathscr{C}at_mathrm{dg}^mathrm{coh}(k)$ of small dg categories over a field $k$, with 1-morphisms defined as dg functors, and with 2-morphisms defined as the complexes of coherent natural transformations, fai
Let $k$ be a field. We show that locally presentable, $k$-linear categories $mathcal{C}$ dualizable in the sense that the identity functor can be recovered as $coprod_i x_iotimes f_i$ for objects $x_iin mathcal{C}$ and left adjoints $f_i$ from $mathc
Restriction categories were established to handle maps that are partially defined with respect to composition. Tensor topology realises that monoidal categories have an intrinsic notion of space, and deals with objects and maps that are partially def
We introduce a notion of $n$-commutativity ($0le nle infty$) for cosimplicial monoids in a symmetric monoidal category ${bf V}$, where $n=0$ corresponds to just cosimplicial monoids in ${bf V,}$ while $n=infty$ corresponds to commutative cosimplicial