ﻻ يوجد ملخص باللغة العربية
In this paper, we study tensor (or monoidal) categories of finite rank over an algebraically closed field $mathbb F$. Given a tensor category $mathcal{C}$, we have two structure invariants of $mathcal{C}$: the Green ring (or the representation ring) $r(mathcal{C})$ and the Auslander algebra $A(mathcal{C})$ of $mathcal{C}$. We show that a Krull-Schmit abelian tensor category $mathcal{C}$ of finite rank is uniquely determined (up to tensor equivalences) by its two structure invariants and the associated associator system of $mathcal{C}$. In fact, we can reconstruct the tensor category $mathcal{C}$ from its two invarinats and the associator system. More general, given a quadruple $(R, A, phi, a)$ satisfying certain conditions, where $R$ is a $mathbb{Z}_+$-ring of rank $n$, $A$ is a finite dimensional $mathbb F$-algebra with a complete set of $n$ primitive orthogonal idempotents, $phi$ is an algebra map from $Aotimes_{mathbb F}A$ to an algebra $M(R, A, n)$ constructed from $A$ and $R$, and $a={a_{i,j,l}|1< i,j,l<n}$ is a family of invertible matrices over $A$, we can construct a Krull-Schmidt and abelian tensor category $mathcal C$ over $mathbb{F}$ such that $R$ is the Green ring of $mathcal C$ and $A$ is the Auslander algebra of $mathcal C$. In this case, $mathcal C$ has finitely many indecomposable objects (up to isomorphisms) and finite dimensional Hom-spaces. Moreover, we will give a necessary and sufficient condition for such two tensor categories to be tensor equivalent.
Restriction categories were established to handle maps that are partially defined with respect to composition. Tensor topology realises that monoidal categories have an intrinsic notion of space, and deals with objects and maps that are partially def
Let $mathcal{C}$ be a finite braided multitensor category. Let $B$ be Majids automorphism braided group of $mathcal{C}$, then $B$ is a cocommutative Hopf algebra in $mathcal{C}$. We show that the center of $mathcal{C}$ is isomorphic to the category o
Let $k$ be a field. We show that locally presentable, $k$-linear categories $mathcal{C}$ dualizable in the sense that the identity functor can be recovered as $coprod_i x_iotimes f_i$ for objects $x_iin mathcal{C}$ and left adjoints $f_i$ from $mathc
We consider the quotient of an exact or one-sided exact category $mathcal{E}$ by a so-called percolating subcategory $mathcal{A}$. For exact categories, such a quotient is constructed in two steps. Firstly, one localizes $mathcal{E}$ at a suitable cl
Each Ann-category $A$ is equivalent to an Ann-category of the type $(R,M),$ where $M$ is an $R$-bimodule. The family of constraints of $A$ induces a {it structure} on $(R,M).$ The main result of the paper is: 1. {it There exists a bijection between