ﻻ يوجد ملخص باللغة العربية
The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the analysis of hadron yields in relativistic heavy ion collisions. We use first-principle lattice simulations to calculate corrections to the ideal HRG. Namely, we determine the sub-leading fugacity expansion coefficients of the grand canonical free energy, receiving contributions from processes like kaon-kaon or baryon-baryon scattering. We achieve this goal by performing a two dimensional scan on the imaginary baryon number chemical potential ($mu_B$) - strangeness chemical potential ($mu_S$) plane, where the fugacity expansion coefficients become Fourier coefficients. We carry out a continuum limit estimation of these coefficients by performing lattice simulations with temporal extents of $N_tau=8,10,12$ using the 4stout-improved staggered action. We then use the truncated fugacity expansion to extrapolate ratios of baryon number and strangeness fluctuations and correlations to finite chemical potentials. Evaluating the fugacity expansion along the crossover line, we reproduce the trend seen in the experimental data on net-proton fluctuations by the STAR collaboration.
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing re
We compare recent lattice QCD calculations of higher order cumulants of net-strangeness fluctuations with hadron resonance gas (HRG) model calculations. Up to the QCD transition temperature Tc=( 154 +/- 9) MeV we find good agreement between QCD and H
We determine the equation of state of QCD at finite chemical potential, to order $(mu_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the res
QCD matter at finite temperature and density is a subject that has witnessed very impressive theoretical developments in the recent years. In this review I will discuss some new insights on the microscopic degrees of freedom of the QCD medium near th
Some recent developments to handle the numerical sign problem in QCD and related theories at nonzero density are reviewed. In this contribution I focus on changing the integration order to soften the severity of the sign problem, the density of state