ﻻ يوجد ملخص باللغة العربية
We determine the equation of state of QCD at finite chemical potential, to order $(mu_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the $(T,~mu_B)$ plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around $mu_B=0$ from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions.
The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from la
We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nt=8. Calculations have been performed with two different improved
We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic a
We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD sim
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V}