ﻻ يوجد ملخص باللغة العربية
We present the first work-optimal polylogarithmic-depth parallel algorithm for the minimum cut problem on non-sparse graphs. For $mgeq n^{1+epsilon}$ for any constant $epsilon>0$, our algorithm requires $O(m log n)$ work and $O(log^3 n)$ depth and succeeds with high probability. Its work matches the best $O(m log n)$ runtime for sequential algorithms [MN STOC 2020, GMW SOSA 2021]. This improves the previous best work by Geissmann and Gianinazzi [SPAA 2018] by $O(log^3 n)$ factor, while matching the depth of their algorithm. To do this, we design a work-efficient approximation algorithm and parallelize the recent sequential algorithms [MN STOC 2020; GMW SOSA 2021] that exploit a connection between 2-respecting minimum cuts and 2-dimensional orthogonal range searching.
We give an algorithm to find a mincut in an $n$-vertex, $m$-edge weighted directed graph using $tilde O(sqrt{n})$ calls to any maxflow subroutine. Using state of the art maxflow algorithms, this yields a directed mincut algorithm that runs in $tilde
We give an $n^{2+o(1)}$-time algorithm for finding $s$-$t$ min-cuts for all pairs of vertices $s$ and $t$ in a simple, undirected graph on $n$ vertices. We do so by constructing a Gomory-Hu tree (or cut equivalent tree) in the same running time, ther
Let $mathcal{D}$ be a set of $n$ disks in the plane. The disk graph $G_mathcal{D}$ for $mathcal{D}$ is the undirected graph with vertex set $mathcal{D}$ in which two disks are joined by an edge if and only if they intersect. The directed transmission
We study the space complexity of sketching cuts and Laplacian quadratic forms of graphs. We show that any data structure which approximately stores the sizes of all cuts in an undirected graph on $n$ vertices up to a $1+epsilon$ error must use $Omega
Given a capacitated undirected graph $G=(V,E)$ with a set of terminals $K subset V$, a mimicking network is a smaller graph $H=(V_H,E_H)$ that exactly preserves all the minimum cuts between the terminals. Specifically, the vertex set of the sparsifie