ﻻ يوجد ملخص باللغة العربية
Let $mathcal{D}$ be a set of $n$ disks in the plane. The disk graph $G_mathcal{D}$ for $mathcal{D}$ is the undirected graph with vertex set $mathcal{D}$ in which two disks are joined by an edge if and only if they intersect. The directed transmission graph $G^{rightarrow}_mathcal{D}$ for $mathcal{D}$ is the directed graph with vertex set $mathcal{D}$ in which there is an edge from a disk $D_1 in mathcal{D}$ to a disk $D_2 in mathcal{D}$ if and only if $D_1$ contains the center of $D_2$. Given $mathcal{D}$ and two non-intersecting disks $s, t in mathcal{D}$, we show that a minimum $s$-$t$ vertex cut in $G_mathcal{D}$ or in $G^{rightarrow}_mathcal{D}$ can be found in $O(n^{3/2}text{polylog} n)$ expected time. To obtain our result, we combine an algorithm for the maximum flow problem in general graphs with dynamic geometric data structures to manipulate the disks. As an application, we consider the barrier resilience problem in a rectangular domain. In this problem, we have a vertical strip $S$ bounded by two vertical lines, $L_ell$ and $L_r$, and a collection $mathcal{D}$ of disks. Let $a$ be a point in $S$ above all disks of $mathcal{D}$, and let $b$ a point in $S$ below all disks of $mathcal{D}$. The task is to find a curve from $a$ to $b$ that lies in $S$ and that intersects as few disks of $mathcal{D}$ as possible. Using our improved algorithm for minimum cuts in disk graphs, we can solve the barrier resilience problem in $O(n^{3/2}text{polylog} n)$ expected time.
Efficient algorithms are presented for constructing spanners in geometric intersection graphs. For a unit ball graph in R^k, a (1+epsilon)-spanner is obtained using efficient partitioning of the space into hypercubes and solving bichromatic closest p
We study the complexity of Maximum Clique in intersection graphs of convex objects in the plane. On the algorithmic side, we extend the polynomial-time algorithm for unit disks [Clark 90, Raghavan and Spinrad 03] to translates of any fixed convex set
A conflict-free $k$-coloring of a graph $G=(V,E)$ assigns one of $k$ different colors to some of the vertices such that, for every vertex $v$, there is a color that is assigned to exactly one vertex among $v$ and $v$s neighbors. Such colorings have a
We study biplane graphs drawn on a finite planar point set $S$ in general position. This is the family of geometric graphs whose vertex set is $S$ and can be decomposed into two plane graphs. We show that two maximal biplane graphs---in the sense tha
We give an algorithm to find a mincut in an $n$-vertex, $m$-edge weighted directed graph using $tilde O(sqrt{n})$ calls to any maxflow subroutine. Using state of the art maxflow algorithms, this yields a directed mincut algorithm that runs in $tilde