ﻻ يوجد ملخص باللغة العربية
We give an $n^{2+o(1)}$-time algorithm for finding $s$-$t$ min-cuts for all pairs of vertices $s$ and $t$ in a simple, undirected graph on $n$ vertices. We do so by constructing a Gomory-Hu tree (or cut equivalent tree) in the same running time, thereby improving on the recent bound of $tilde{O}(n^{2.5})$ by Abboud et al. (FOCS 2021). Our running time is nearly optimal as a function of $n$.
Minimum-weight cut (min-cut) is a basic measure of a networks connectivity strength. While the min-cut can be computed efficiently in the sequential setting [Karger STOC96], there was no efficient way for a distributed network to compute its own min-
We present the first work-optimal polylogarithmic-depth parallel algorithm for the minimum cut problem on non-sparse graphs. For $mgeq n^{1+epsilon}$ for any constant $epsilon>0$, our algorithm requires $O(m log n)$ work and $O(log^3 n)$ depth and su
We consider high dimensional variants of the maximum flow and minimum cut problems in the setting of simplicial complexes and provide both algorithmic and hardness results. By viewing flows and cuts topologically in terms of the simplicial (co)bounda
Let $G = (V,E,w)$ be a weighted undirected graph on $|V| = n$ vertices and $|E| = m$ edges, let $k ge 1$ be any integer, and let $epsilon < 1$ be any parameter. We present the following results on fast constructions of spanners with near-optimal spar
The maximum/minimum bisection problems are, given an edge-weighted graph, to find a bipartition of the vertex set into two sets whose sizes differ by at most one, such that the total weight of edges between the two sets is maximized/minimized. Althou