ﻻ يوجد ملخص باللغة العربية
A useful approach to solve inverse problems is to pair the parameter-to-data map with a stochastic dynamical system for the parameter, and then employ techniques from filtering to estimate the parameter given the data. Three classical approaches to filtering of nonlinear systems are the extended, ensemble and unscented Kalman filters. The extended Kalman inversion (ExKI) is impractical when the forward map is not readily differentiable and given as a black box, and also for high dimensional parameter spaces because of the need to propagate large covariance matrices. Ensemble Kalman inversion (EKI) has emerged as a useful tool which overcomes both of these issues: it is derivative free and works with a low-rank covariance approximation formed from the ensemble. In this paper, we demonstrate that unscented Kalman methods also provide an effective tool for derivative-free inversion in the setting of black-box forward models, introducing unscented Kalman inversion (UKI). Theoretical analysis is provided for linear inverse problems, and a smoothing property of the data mis-fit under the unscented transform is explained. We provide numerical experiments, including various applications: learning subsurface flow permeability parameters; learning the structure damage field; learning the Navier-Stokes initial condition; and learning subgrid-scale parameters in a general circulation model. The theory and experiments show that the UKI outperforms the EKI on parameter learning problems with moderate numbers of parameters and outperforms the ExKI on problems where the forward model is not readily differentiable, or where the derivative is very sensitive. In particular, UKI based methods are of particular value for parameter estimation problems in which the number of parameters is moderate but the forward model is expensive and provided as a black box which is impractical to differentiate.
The unscented Kalman inversion (UKI) method presented in [1] is a general derivative-free approach for the inverse problem. UKI is particularly suitable for inverse problems where the forward model is given as a black box and may not be differentiabl
The unscented Kalman inversion (UKI) presented in [1] is a general derivative-free approach to solving the inverse problem. UKI is particularly suitable for inverse problems where the forward model is given as a black box and may not be differentiabl
Ensemble Kalman Inversion (EnKI) and Ensemble Square Root Filter (EnSRF) are popular sampling methods for obtaining a target posterior distribution. They can be seem as one step (the analysis step) in the data assimilation method Ensemble Kalman Filt
In this work we marry multi-index Monte Carlo with ensemble Kalman filtering (EnKF) to produce the multi-index EnKF method (MIEnKF). The MIEnKF method is based on independent samples of four-coupled EnKF estimators on a multi-index hierarchy of resol
We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to r