ﻻ يوجد ملخص باللغة العربية
We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to recover a highly oscillatory tensor from measurements of the multiscale solution in a computationally inexpensive manner. The properties of the approximate solution are analysed with respect to the multiscale and discretization parameters, and a convergence result is shown to hold. A reinterpretation of the solution from a Bayesian perspective is provided, and convergence of the approximate conditional posterior distribution is proved with respect to the Wasserstein distance. A numerical experiment validates our methodology, with a particular emphasis on modelling error and computational cost.
This work develops a new multifidelity ensemble Kalman filter (MFEnKF) algorithm based on linear control variate framework. The approach allows for rigorous multifidelity extensions of the EnKF, where the uncertainty in coarser fidelities in the hier
Ensemble Kalman Inversion (EnKI) and Ensemble Square Root Filter (EnSRF) are popular sampling methods for obtaining a target posterior distribution. They can be seem as one step (the analysis step) in the data assimilation method Ensemble Kalman Filt
In this work we marry multi-index Monte Carlo with ensemble Kalman filtering (EnKF) to produce the multi-index EnKF method (MIEnKF). The MIEnKF method is based on independent samples of four-coupled EnKF estimators on a multi-index hierarchy of resol
The spatial dependent unknown acoustic source is reconstructed according noisy multiple frequency data on a remote closed surface. Assume that the unknown function is supported on a bounded domain. To determine the support, we present a statistical i
In this paper, we study temporal splitting algorithms for multiscale problems. The exact fine-grid spatial problems typically require some reduction in degrees of freedom. Multiscale algorithms are designed to represent the fine-scale details on a co